Fabian Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822477/publications.pdf

Version: 2024-02-01

		236612	329751	
37	3,215	25	37	
papers	citations	h-index	g-index	
38	38	38	3747	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, The, 2021, 398, 1619-1662.	6.3	669
2	Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 2011, 26, 1489-1501.	1.9	578
3	Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios. Annual Review of Environment and Resources, 2013, 38, 31-55.	5.6	166
4	Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry. Energy, 2014, 78, 333-345.	4.5	151
5	Potential for concentrating solar power to provide baseload and dispatchable power. Nature Climate Change, 2014, 4, 689-692.	8.1	146
6	How to spend a dwindling greenhouse gas budget. Nature Climate Change, 2018, 8, 7-10.	8.1	119
7	Reduction of solar photovoltaic resources due to air pollution in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11867-11872.	3.3	112
8	The impact of human health co-benefits on evaluations of global climate policy. Nature Communications, 2019, 10, 2095.	5.8	99
9	Managing China's coal power plants to address multiple environmental objectives. Nature Sustainability, 2018, 1, 693-701.	11.5	98
10	Air quality, health, and climate implications of China's synthetic natural gas development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4887-4892.	3.3	90
11	Operationalizing the net-negative carbon economy. Nature, 2021, 596, 377-383.	13.7	87
12	Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China. Science of the Total Environment, 2017, 598, 1076-1084.	3.9	73
13	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	1.6	70
14	Impact of population growth and population ethics on climate change mitigation policy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12338-12343.	3.3	64
15	Modeling energy efficiency to improve air quality and health effects of China's cement industry. Applied Energy, 2016, 184, 574-593.	5.1	63
16	On the financial viability of negative emissions. Nature Communications, 2019, 10, 1783.	5.8	59
17	Integrated assessment of resource-energy-environment nexus in China's iron and steel industry. Journal of Cleaner Production, 2019, 232, 235-249.	4.6	58
18	Exploring the driving forces of energy consumption and environmental pollution in China's cement industry at the provincial level. Journal of Cleaner Production, 2018, 184, 274-285.	4.6	54

#	Article	IF	CITATIONS
19	Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030. Environmental Research Letters, 2018, 13, 064002.	2.2	53
20	Air quality–carbon–water synergies and trade-offs in China's natural gas industry. Nature Sustainability, 2018, 1, 505-511.	11.5	49
21	Cost-effective management of coastal eutrophication: A case study for the Yangtze river basin. Resources, Conservation and Recycling, 2020, 154, 104635.	5. 3	38
22	Household contributions to and impacts from air pollution in India. Nature Sustainability, 2021, 4, 859-867.	11.5	37
23	Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Climatic Change, 2020, 158, 141-160.	1.7	36
24	Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-benefits for Annex I countries. Sustainability Science, 2012, 7, 169-184.	2.5	34
25	Carbon emission trading and carbon taxes under uncertainties. Climatic Change, 2010, 103, 277-289.	1.7	32
26	Using large ensembles of climate change mitigation scenarios for robust insights. Nature Climate Change, 2022, 12, 428-435.	8.1	28
27	Short-term solar and wind variability in long-term energy system models - A European case study. Energy, 2020, 209, 118377.	4.5	22
28	The Critical Role of Policy Enforcement in Achieving Health, Air Quality, and Climate Benefits from India's Clean Electricity Transition. Environmental Science & Echnology, 2020, 54, 11720-11731.	4.6	22
29	The Contribution of Non-CO2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals. Energies, 2017, 10, 602.	1.6	21
30	Response of electricity sector air pollution emissions to drought conditions in the western United States. Environmental Research Letters, 2018, 13, 124032.	2.2	20
31	The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India. Energies, 2017, 10, 360.	1.6	17
32	Optimal Climate Policy and the Future of World Economic Development. World Bank Economic Review, 2019, 33, 21-40.	1.4	13
33	Protecting the poor with a carbon tax and equal per capita dividend. Nature Climate Change, 2021, 11, 1025-1026.	8.1	11
34	The importance of health co-benefits under different climate policy cooperation frameworks. Environmental Research Letters, 2021, 16, 055027.	2.2	10
35	Incorporating political-feasibility concerns into the assessment of India's clean-air policies. One Earth, 2021, 4, 1163-1174.	3.6	10
36	Mitigation here and now or there and then: the role of co-benefits. Carbon Management, 2012, 3, 325-327.	1.2	3

#	Article	IF	CITATIONS
37	On the limits to solar thermal power: A reply to Trainer. Energy Policy, 2014, 75, 424-425.	4.2	3