Leonardo Machado Pitombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822446/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy, 2013, 5, 267-280.	2.5	161
2	Exploring soil microbial 16S <scp>rRNA</scp> sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. GCB Bioenergy, 2016, 8, 867-879.	2.5	66
3	Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. Science of the Total Environment, 2018, 631-632, 1089-1099.	3.9	45
4	Effects of organic and inorganic fertilizers on greenhouse gas (GHG) emissions in tropical forestry. Forest Ecology and Management, 2013, 310, 37-44.	1.4	36
5	Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. Journal of Environmental Management, 2018, 206, 980-988.	3.8	32
6	Straw preservation reduced total N ₂ O emissions from a sugarcane field. Soil Use and Management, 2017, 33, 583-594.	2.6	28
7	Organic management increases soil nitrogen but not carbon content in a tropical citrus orchard with pronounced N2O emissions. Journal of Environmental Management, 2019, 234, 326-335.	3.8	21
8	The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environmental Monitoring and Assessment, 2021, 193, 63.	1.3	19
9	Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects. Scientia Agricola, 2015, 72, 147-156.	0.6	16
10	Filmes poliméricos baseados em amido e lignossulfonatos: preparação, propriedades e avaliação da biodegradação. Polimeros, 2014, 24, 740-751.	0.2	13
11	Methodology for soil respirometric assays: Step by step and guidelines to measure fluxes of trace gases using microcosms. MethodsX, 2018, 5, 656-668.	0.7	12
12	Single and combined toxicity of the pesticides abamectin and difenoconazole on soil microbial activity and Enchytraeus crypticus population. SN Applied Sciences, 2020, 2, 1.	1.5	7
13	CO2 emission from soil after reforestation and application of sewage sludge. Bragantia, 2014, 73, 312-318.	1.3	6
14	Interaction Study Between Humin and Phosphate: Possible Environmental Remediation for Domestic Wastewater. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	5
15	Digested bioenergy byproduct with low concentration of nutrients increased greenhouse gas emissions from soil. Geoderma, 2017, 307, 81-90.	2.3	2
16	Multi-Analytical Interactions in Support of Sugarcane Agroecosystems Sustainability in Tropical Soils. , 2018, , .		2
17	Potential ofInga sp.(Inga uruguensisHook. and Arn.) in the Phytoremediation of Oily Compounds. Soil and Sediment Contamination, 2013, 22, 829-838.	1.1	1
18	Nutritional evaluation of Guanandi seedlings fertilized with sewage sludge. Bragantia, 2019, 78, 253-263.	1.3	0

#	Article	IF	CITATIONS
19	Influence of Non-Lignocellulosic Elements on the Combustion of Treated Wood and Wooden Panel. Sustainability, 2021, 13, 5161.	1.6	0