Miriam Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8822167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological applications of magnetic nanoparticles. Chemical Society Reviews, 2012, 41, 4306.	18.7	1,079
2	Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 174, 42-55.	2.5	233
3	Intracellular Drug Release from Curcumin-Loaded PLGA Nanoparticles Induces G2/M Block in Breast Cancer Cells. Biomacromolecules, 2013, 14, 672-682.	2.6	136
4	Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 2019, 11, 1855.	1.7	135
5	The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science, 2021, 293, 102437.	7.0	117
6	Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nature Communications, 2016, 7, 13818.	5.8	115
7	Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. International Journal of Nanomedicine, 2017, Volume 12, 2517-2530.	3.3	108
8	Biotechnological approaches toward nanoparticle biofunctionalization. Trends in Biotechnology, 2014, 32, 11-20.	4.9	107
9	Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. Journal of Controlled Release, 2014, 196, 184-196.	4.8	99
10	The modality of cell–particle interactions drives the toxicity of nanosized CuO and TiO2 in human alveolar epithelial cells. Toxicology Letters, 2013, 222, 102-116.	0.4	84
11	Single-Domain Protein A-Engineered Magnetic Nanoparticles: Toward a Universal Strategy to Site-Specific Labeling of Antibodies for Targeted Detection of Tumor Cells. ACS Nano, 2010, 4, 5693-5702.	7.3	77
12	Assessing the <i>In Vivo</i> Targeting Efficiency of Multifunctional Nanoconstructs Bearing Antibody-Derived Ligands. ACS Nano, 2013, 7, 6092-6102.	7.3	73
13	H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules, 2017, 18, 3318-3330.	2.6	69
14	Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Seminars in Immunology, 2017, 34, 61-67.	2.7	69
15	HER2 Expression in Breast Cancer Cells Is Downregulated Upon Active Targeting by Antibody-Engineered Multifunctional Nanoparticles in Mice. ACS Nano, 2011, 5, 6383-6393.	7.3	66
16	Site‧pecific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 496-499.	7.2	66
17	Resolving the Structure of Ligands Bound to the Surface of Superparamagnetic Iron Oxide Nanoparticles by High-Resolution Magic-Angle Spinning NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 12712-12724.	6.6	63
18	HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 2010, 62, 150-165.	3.1	63

#	Article	IF	CITATIONS
19	Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Scientific Reports, 2018, 8, 6563.	1.6	60
20	Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction. Nanomedicine, 2015, 10, 9-23.	1.7	57
21	Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends in Biotechnology, 2019, 37, 995-1010.	4.9	57
22	Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1387-1397.	1.7	56
23	Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 957-973.	3.3	53
24	Protein Oriented Ligation on Nanoparticles Exploiting <i>O</i> ₆ â€Alkylguanineâ€ĐNA Transferase (SNAP) Genetically Encoded Fusion. Small, 2012, 8, 1492-1497.	5.2	51
25	Proteinâ€Assisted Oneâ€Pot Synthesis and Biofunctionalization of Spherical Gold Nanoparticles for Selective Targeting of Cancer Cells. Angewandte Chemie - International Edition, 2012, 51, 9272-9275.	7.2	48
26	Uniform Lipopolysaccharide (LPS)‣oaded Magnetic Nanoparticles for the Investigation of LPS–TLR4 Signaling. Angewandte Chemie - International Edition, 2011, 50, 622-626.	7.2	44
27	Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chemical Communications, 2014, 50, 11029.	2.2	43
28	Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Analytical Biochemistry, 2009, 392, 96-102.	1.1	41
29	Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale, 2011, 3, 387-390.	2.8	41
30	Towards Ideal Magnetofluorescent Nanoparticles for Bimodal Detection of Breast ancer Cells. Small, 2009, 5, 2555-2564.	5.2	40
31	Orientationâ€Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 3121-3125.	7.2	39
32	Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano–Bio Interface Perspective. Advanced Healthcare Materials, 2014, 3, 957-976.	3.9	39
33	Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	38
34	Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacological Research, 2016, 111, 619-641.	3.1	38
35	Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. Journal of Controlled Release, 2019, 310, 198-208.	4.8	36
36	Development of ^{99m} Tc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. International Journal of Nanomedicine, 2017, Volume 12, 3447-3461.	3.3	35

#	Article	IF	CITATIONS
37	Structural Iridescent Tuned Colors from Self-Assembled Polymer Opal Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 6071-6079.	4.0	33
38	Antiproliferative Effect of ASC-J9 Delivered by PLGA Nanoparticles against Estrogen-Dependent Breast Cancer Cells. Molecular Pharmaceutics, 2014, 11, 2864-2875.	2.3	33
39	Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacological Research, 2016, 110, 122-130.	3.1	30
40	Engineered Ferritin Nanoparticles for the Bioluminescence Tracking of Nanodrug Delivery in Cancer. Small, 2020, 16, e2001450.	5.2	30
41	Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1556-1564.	1.1	29
42	MnO Nanoparticles Embedded in Functional Polymers as <i>T</i> ₁ Contrast Agents for Magnetic Resonance Imaging. ACS Applied Nano Materials, 2020, 3, 3787-3797.	2.4	29
43	One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy. Materials Chemistry and Physics, 2014, 143, 1215-1221.	2.0	24
44	Theranostic Nanocages for Imaging and Photothermal Therapy of Prostate Cancer Cells by Active Targeting of Neuropeptide-Y Receptor. Bioconjugate Chemistry, 2016, 27, 2911-2922.	1.8	24
45	Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia. Journal of Colloid and Interface Science, 2020, 579, 186-194.	5.0	24
46	Aggregation-Induced Förster Resonance Energy Transfer in Polybenzofulvene/Dye Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18986-18991.	1.5	22
47	Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles. Journal of Nanobiotechnology, 2017, 15, 14.	4.2	22
48	Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomaterials Science, 2013, 1, 728.	2.6	21
49	Impact of the strategy adopted for drug loading in nonporous silica nanoparticles on the drug release and cytotoxic activity. Journal of Colloid and Interface Science, 2018, 519, 18-26.	5.0	21
50	Cream Formulation Impact on Topical Administration of Engineered Colloidal Nanoparticles. PLoS ONE, 2015, 10, e0126366.	1.1	20
51	H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB <i>in vitro</i> model for treatment of brain malignancies. Biomaterials Science, 2021, 9, 2032-2042.	2.6	19
52	Magnetic peptide nucleic acids for DNA targeting. Chemical Communications, 2009, , 6017.	2.2	18
53	Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	18
54	Innovative approach to safely induce controlled lipolysis by superparamagnetic iron oxide nanoparticles-mediated hyperthermic treatment. International Journal of Biochemistry and Cell Biology, 2017, 93, 62-73.	1.2	17

#	Article	IF	CITATIONS
55	Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs. Pharmaceutics, 2019, 11, 658.	2.0	17
56	Peptide-Nanoparticle Ligation Mediated by <i>Cutinase</i> Fusion for the Development of Cancer Cell-Targeted Nanoconjugates. Bioconjugate Chemistry, 2015, 26, 680-689.	1.8	16
57	Red and deep-red emissive polymeric nanoparticles based on polybenzofulvene and perylenediimide derivatives. Dyes and Pigments, 2018, 149, 331-335.	2.0	16
58	<p>Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: an in vitro study</p> . International Journal of Nanomedicine, 2019, Volume 14, 773-785.	3.3	16
59	Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca ²⁺ mobilization and the inflammatory activity of dendritic cells. Science Signaling, 2021, 14, .	1.6	15
60	One-pot phase transfer and surface modification of CdSe–ZnS quantum dots using a synthetic functional copolymer. Chemical Communications, 2014, 50, 240-242.	2.2	14
61	Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology, 2017, 11, 534-545.	1.6	14
62	Half-Chain Cetuximab Nanoconjugates Allow Multitarget Therapy of Triple Negative Breast Cancer. Bioconjugate Chemistry, 2018, 29, 3817-3832.	1.8	14
63	99mTc-Radiolabeled Silica Nanocarriers for Targeted Detection and Treatment of HER2-Positive Breast Cancer. International Journal of Nanomedicine, 2021, Volume 16, 1943-1960.	3.3	14
64	Full-Length Recombinant hSP-D Binds and Inhibits SARS-CoV-2. Biomolecules, 2021, 11, 1114.	1.8	13
65	Immobilization of carboxypeptidase from Sulfolobus solfataricuson magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnology, 2014, 14, 82.	1.7	12
66	Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. Nanoscale Advances, 2019, 1, 3626-3638.	2.2	12
67	Multiple Presentation of Scfv800E6 on Silica Nanospheres Enhances Targeting Efficiency Toward HER-2 Receptor in Breast Cancer Cells. Bioconjugate Chemistry, 2011, 22, 2296-2303.	1.8	11
68	Nano-targeting of mucosal addressin cell adhesion molecule-1 identifies bowel inflammation foci in murine model. Nanomedicine, 2017, 12, 1547-1560.	1.7	11
69	The Role of Polymeric Coatings for a Safe-by-Design Development of Biomedical Gold Nanoparticles Assessed in Zebrafish Embryo. Nanomaterials, 2021, 11, 1004.	1.9	11
70	<p>Anti-MAdCAM-1-Conjugated Nanocarriers Delivering Quantum Dots Enable Specific Imaging of Inflammatory Bowel Disease</p> . International Journal of Nanomedicine, 2020, Volume 15, 8537-8552.	3.3	10
71	Are nanotechnological approaches the future of treating inflammatory diseases?. Nanomedicine, 2019, 14, 2379-2390.	1.7	8
72	Functionalization of colloidal nanoparticles with a discrete number of ligands based on a "HALO-bioclick―reaction. Chemical Communications, 2020, 56, 11398-11401.	2.2	8

#	Article	IF	CITATIONS
73	Development of an Effective Tumor-Targeted Contrast Agent for Magnetic Resonance Imaging Based on Mn/H-Ferritin Nanocomplexes. ACS Applied Bio Materials, 2021, 4, 7800-7810.	2.3	8
74	Magnetofluorescent nanoparticles for bimodal detection of breast cancer cells. , 2010, , .		7
75	Towards a Universal Method for the Stable and Clean Functionalization of Inert Perfluoropolymer Nanoparticles: Exploiting Photopolymerizable Amphiphilic Diacetylenes. Advanced Functional Materials, 2010, 20, 3932-3940.	7.8	7
76	Nanoparticleâ€Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment. Advanced Therapeutics, 2020, 3, 2000007.	1.6	7
77	Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans. Nanomaterials, 2021, 11, 1551.	1.9	7
78	Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111366.	2.5	6
79	Bioengineered Approaches for Site Orientation of Peptide-Based Ligands of Nanomaterials. , 2018, , 139-169.		5
80	Loading Imatinib inside targeted nanoparticles to prevent Bronchiolitis Obliterans Syndrome. Scientific Reports, 2020, 10, 20726.	1.6	4
81	Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials, 2020, 10, 1115.	1.9	4
82	Suicide Gene Therapy: A New Frontier for Cancer Fighting. Current Pharmaceutical Biotechnology, 2019, 20, 2-4.	0.9	3
83	Strategies for the Characterization of the Saccharidic Moiety in Composite Nanoparticles. ACS Symposium Series, 2011, , 69-89.	0.5	2
84	Targeted delivery of nanoparticles. Frontiers of Nanoscience, 2020, 16, 253-264.	0.3	2
85	O ₆ -alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
86	Novel biotinylated bile acid amphiphiles: Micellar aggregates formation and interaction with hepatocytes. Organic and Biomolecular Chemistry, 2011, 9, 2899.	1.5	0