Reza Mirzaeifar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8821474/publications.pdf Version: 2024-02-01

REZA MIDZAEIEAD

#	Article	IF	CITATIONS
1	Achieving multimodal locomotion by a crosslinked poly(ethylene-co-vinyl acetate)-based two-way shape memory polymer. Smart Materials and Structures, 2022, 31, 015034.	1.8	8
2	Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties. Computational Materials Science, 2021, 188, 110204.	1.4	12
3	A constriction channel analysis of astrocytoma stiffness and disease progression. Biomicrofluidics, 2021, 15, 024103.	1.2	11
4	Developing an experimental-computational framework to investigate the deformation mechanisms and mechanical properties of Al-8Ce-10Mg alloys at micro and macroscales. Materials Today Communications, 2021, 28, 102674.	0.9	4
5	Experiment and non-local crystal plasticity finite element study of nanoindentation on Al-8Ce-10Mg alloy. International Journal of Solids and Structures, 2021, 233, 111233.	1.3	21
6	Interaction of high-intensity focused ultrasound with polymers at the atomistic scale. Nanotechnology, 2021, 32, 045707.	1.3	6
7	Computational investigation of deformation mechanisms at the atomistic scale of metallic glass-graphene composites (MGGCs). Journal of Applied Physics, 2021, 130, .	1.1	1
8	An investigation towards intelligent tyres using finite element analysis. International Journal of Pavement Engineering, 2020, 21, 311-321.	2.2	17
9	Computational Study of Fatigue in Sub-grain Microstructure of Additively Manufactured Alloys. Journal of Materials Engineering and Performance, 2020, 29, 4631-4640.	1.2	2
10	Ductile Shape-Memory Polymer Composite with Enhanced Shape Recovery Ability. ACS Applied Materials & Interfaces, 2020, 12, 58295-58300.	4.0	17
11	Selective laser melting of aluminum nano-powder particles, a molecular dynamics study. Additive Manufacturing, 2020, 35, 101272.	1.7	15
12	Effect of interface configuration on the mechanical properties and dislocation mechanisms in metal graphene composites. Computational Materials Science, 2020, 178, 109621.	1.4	23
13	Interplay of Chain Orientation and Bond Length in Size Dependency of Mechanical Properties in Polystyrene Nanofibers. ACS Applied Polymer Materials, 2020, 2, 1664-1671.	2.0	8
14	The optimal geometry of sub-grain microstructural features in 3D printed alloys for improving the strength and toughness. Engineering Research Express, 2020, 2, 015051.	0.8	0
15	Deformation mechanisms and defect tolerance in the microstructure of 3D-printed alloys. Journal of Materials Research, 2020, 35, 1984-1997.	1.2	7
16	Deformation mechanisms of the subgranular cellular structures in selective laser melted 316L stainless steel. Mechanics of Materials, 2020, 148, 103478.	1.7	16
17	Tire health monitoring using the intelligent tire concept. Structural Health Monitoring, 2019, 18, 390-400.	4.3	13
18	Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method. International Journal of Fatigue, 2019, 128, 105208.	2.8	28

REZA MIRZAEIFAR

#	Article	IF	CITATIONS
19	Energy dissipation of shock-generated stress waves through phase transformation and plastic deformation in NiTi alloys. Mechanics of Materials, 2019, 137, 103090.	1.7	11
20	Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion. Applied Energy, 2019, 251, 113277.	5.1	22
21	Tracking the origins of size dependency in the mechanical properties of polymeric nanofibers at the atomistic scale. Polymer, 2019, 175, 118-128.	1.8	17
22	Graphene-Nickel interaction in layered metal-matrix composites. Surface Science, 2019, 688, 1-6.	0.8	17
23	Bioinspired design of flexible armor based on chiton scales. Nature Communications, 2019, 10, 5413.	5.8	56
24	Damage diagnosis in intelligent tires using time-domain and frequency-domain analysis. Mechanics Based Design of Structures and Machines, 2019, 47, 54-66.	3.4	14
25	Damage modeling of metallic alloys made by additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 656-664.	2.6	23
26	A review of fatigue and fracture mechanics with a focus on rubber-based materials. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1005-1019.	0.7	8
27	Modeling, characterization and parametric identification of low velocity impact behavior of time-dependent hyper-viscoelastic sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 622-636.	0.7	3
28	Studying the Effect of Tangential Forces on Rolling Contact Fatigue in Rails Considering Microstructure. , 2019, , .		0
29	Dissipation of cavitation-induced shock waves energy through phase transformation in NiTi alloys. International Journal of Mechanical Sciences, 2018, 137, 304-314.	3.6	19
30	A study on the effect of energy input on spatter particles creation during selective laser melting process. Additive Manufacturing, 2018, 20, 33-43.	1.7	68
31	Modeling of rolling contact fatigue in rails at the microstructural level. Wear, 2018, 406-407, 205-217.	1.5	30
32	An investigation of intelligent tires using multiscale modeling of cord-rubber composites. Mechanics Based Design of Structures and Machines, 2018, 46, 168-183.	3.4	18
33	Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Materials and Design, 2018, 137, 204-213.	3.3	44
34	Stress Wave and Phase Transformation Propagation at the Atomistic Scale in NiTi Shape Memory Alloys Subjected to Shock Loadings. Shape Memory and Superelasticity, 2018, 4, 435-449.	1.1	6
35	Ultrasound actuated shape-memory polymer based drug delivery containers. , 2018, , .		7
36	Modeling of NiTiHf using finite difference method. , 2018, , .		1

Modeling of NiTiHf using finite difference method. , 2018, , . 36

Reza Mirzaeifar

#	Article	IF	CITATIONS
37	Tilt grain boundaries energy and structure in NiTi alloys. Computational Materials Science, 2017, 131, 108-119.	1.4	22
38	Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs. Nanoscale, 2017, 9, 5565-5576.	2.8	7
39	Generalized stacking fault energy and dislocation properties in NiTi shape memory alloys. Journal of Alloys and Compounds, 2017, 709, 72-81.	2.8	18
40	Focused ultrasound actuation of shape memory polymers; acoustic-thermoelastic modeling and testing. RSC Advances, 2017, 7, 45452-45469.	1.7	36
41	Ultrasound Actuation of Shape-Memory Polymer Filaments: Acoustic-Thermoelastic Modeling and Testing. , 2017, , .		4
42	Spatter formation in selective laser melting process using multi-laser technology. Materials and Design, 2017, 131, 460-469.	3.3	134
43	A Multi-Scale Model for Bending Stiffness of CNT Strands in CNT Fibers. , 2017, , .		0
44	Nanocrystalline nickel-graphene nanoplatelets composite: Superior mechanical properties and mechanics of properties enhancement at the atomistic level. Physical Review Materials, 2017, 1, .	0.9	15
45	Independent tuning of stiffness and toughness of additively manufactured titanium-polymer composites: Simulation, fabrication, and experimental studies. Journal of Materials Processing Technology, 2016, 238, 22-29.	3.1	33
46	Finite Element Modeling of Selective Laser Melting 316L Stainless Steel Parts for Evaluating the Mechanical Properties. , 2016, , .		5
47	Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Materials and Design, 2016, 112, 328-338.	3.3	153
48	Numerical Investigation of Scale Factor in Composites Applying Extended Finite Element Method. , 2016, , .		2
49	Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale, 2015, 7, 5435-5445.	2.8	51
50	Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. ACS Biomaterials Science and Engineering, 2015, 1, 295-304.	2.6	75
51	Structural transformations in NiTi shape memory alloy nanowires. Journal of Applied Physics, 2014, 115, .	1.1	54
52	Tensile strength of carbyne chains in varied chemical environments and structural lengths. Nanotechnology, 2014, 25, 371001.	1.3	13
53	On superelastic bending of shape memory alloy beams. International Journal of Solids and Structures, 2013, 50, 1664-1680.	1.3	60
54	A micromechanical analysis of the coupled thermomechanical superelastic response of textured and untextured polycrystalline NiTi shape memory alloys. Acta Materialia, 2013, 61, 4542-4558.	3.8	33

Reza Mirzaeifar

#	Article	IF	CITATIONS
55	Bending Analysis of Textured Polycrystalline Shape Memory Alloy Beams. , 2012, , .		о
56	A closed-form solution for superelastic shape memory alloy beams subjected to bending. Proceedings of SPIE, 2012, , .	0.8	1
57	Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion. International Journal of Non-Linear Mechanics, 2012, 47, 118-128.	1.4	23
58	An Iterative Method for Large Modification of Vibration and Buckling Characteristics of Plates Simultaneously. , 2011, , .		0
59	A Simplified Constitutive Model for Simulating the Rate-Dependent Superelastic Shape Memory Alloys in Fast Loadings. , 2011, , .		Ο
60	A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure. Archive of Applied Mechanics, 2011, 81, 1093-1116.	1.2	26
61	Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mechanics and Thermodynamics, 2011, 23, 363-385.	1.4	44
62	A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. International Journal of Solids and Structures, 2011, 48, 611-624.	1.3	97
63	Modifying the Shear Buckling Loads of Metal Shear Walls for Improving Their Energy Absorption Capacity. Advances in Structural Engineering, 2011, 14, 1247-1257.	1.2	1
64	Is the Stress Distribution Uniform in the Cross Section of SMA Bars Subjected to Uniaxial Loading? Is it Related to Rate Dependency?. , 2011, , .		0
65	Exact Solution for Pure Torsion of SMA Curved Bars With Application to Analyzing SMA Helical Springs. , 2011, , .		0
66	Exact solutions for pure torsion of shape memory alloy circular bars. Mechanics of Materials, 2010, 42, 797-806.	1.7	56
67	Static and Dynamic Analysis of Thick Functionally Graded Plates with Piezoelectric Layers Using Layerwise Finite Element Model. Mechanics of Advanced Materials and Structures, 2009, 16, 561-575.	1.5	36
68	A New Method for Analyzing Thick Walled Shape Memory Alloy Cylinders Subjected to Internal Pressure. , 2009, , .		1
69	Coupled modification of natural frequencies and buckling loads of composite cylindrical panels. International Journal of Mechanical Sciences, 2009, 51, 708-717.	3.6	8
70	An approximate method for simultaneous modification of natural frequencies and buckling loads of thin rectangular isotropic plates. Engineering Structures, 2009, 31, 208-215.	2.6	11
71	Nonlinear finite element formulation for analyzing shape memory alloy cylindrical panels. Smart Materials and Structures, 2009, 18, 035002.	1.8	16
72	A new method for finding the first―and secondâ€order eigenderivatives of asymmetric nonâ€conservative systems with application to an FGM plate actively controlled by piezoelectric sensor/actuators. International Journal for Numerical Methods in Engineering, 2008, 75, 1492-1510.	1.5	20

REZA MIRZAEIFAR

#	Article	IF	CITATIONS
73	Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs. Smart Materials and Structures, 2008, 17, 045003.	1.8	19
74	Optimization of the Dynamic Characteristics of Composite Plates Using an Inverse Approach. Journal of Composite Materials, 2007, 41, 3091-3108.	1.2	10
75	New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221, 869-885.	1.1	27
76	Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation. International Journal of Crashworthiness, 2007, 12, 493-501.	1.1	79
77	Modification of dynamic characteristics of FGM plates with integrated piezoelectric layers using first- and second-order approximations. International Journal for Numerical Methods in Engineering, 2007, 70, 1409-1429.	1.5	15