
Vitaly N Kovalenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8821052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Individual stereoisomers of verbenol and verbenone express bioactive features. Journal of Molecular Structure, 2022, 1251, 131999.	3.6	4
2	Ethoxycarbonyl functionalized Tröger's base alongside its congener dihydroquinazoline: A trick with crystallization. Chemical Data Collections, 2020, 25, 100339.	2.3	0
3	Practical method for increasing optical purity of <i>cis</i> â€verbenol. Chirality, 2019, 31, 865-869.	2.6	5
4	Chiral Resolution of Racemic 2â€Pyrone Dielsâ€Alder Cycloadduct by Diastereomeric Salt Formation. Bulletin of the Korean Chemical Society, 2019, 40, 910-913.	1.9	4
5	Scalable Synthesis ofNâ€Acetylated αâ€Amino Acidâ€Derived Oxazoline Ligands. Journal of Heterocyclic Chemistry, 2019, 56, 909-914.	2.6	0
6	Selective hydrogenation of conjugated unsaturated ketones containing a hydroxyaryl substituent in the β-position. Russian Journal of Organic Chemistry, 2017, 53, 24-28.	0.8	1
7	Crystallization of bisulfite derivatives of enantiomerically enriched verbenone. Russian Journal of Organic Chemistry, 2017, 53, 1598-1600.	0.8	0
8	Improved synthesis of optically active ipsdienol. Russian Journal of Organic Chemistry, 2016, 52, 757-758.	0.8	6
9	A Simple Method for Resolution of <i>Endo</i> â€/ <i>Exo</i> â€Monoesters of <i>Trans</i> â€Norbornâ€5â€Eneâ€2,3â€Dicarboxylic Acids Into Their Enantiomers. Chirality, 2015, 27, 151-155.	2.6	13
10	(4S,6R)-4-methyl-6-pentyltetrahydro-2H-pyran-2-one as an efficient intermediate in the preparation of chiral building blocks with methyl-branched carbon skeleton. Application to the synthesis of bioactive compounds. Russian Journal of Organic Chemistry, 2014, 50, 1621-1627.	0.8	3
11	Synthesis of Raspberry and Ginger Ketones by Nickel Boride-catalyzed Hydrogenation of 4-Arylbut-3-en-2-ones. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 885-888.	0.7	6
12	Cyclopropane intermediates in the synthesis of chiral alcohols with methyl-branched carbon skeleton. Application in the synthesis of insect pheromones. Russian Journal of Organic Chemistry, 2014, 50, 934-942.	0.8	7
13	Chiral methyl trans-2,2-dichloro-3-methylcyclopropanecarboxylate upon exposure to thiophenolate nucleophile. Arkivoc, 2014, 2014, 80-89.	0.5	0
14	Stereoselective synthesis of (R)- and (S)-Ipsdienols, pheromone components of bark beetles of the Ips family. Russian Journal of Organic Chemistry, 2012, 48, 1168-1172.	0.8	7
15	Stereoselective synthesis of (2S,3S,7S)-3,7-dimethylpentadecan-2-ol and its propionate, the sex pheromones of pine sawflies. Tetrahedron: Asymmetry, 2012, 23, 1393-1399.	1.8	6
16	The resolution of trans-2,2-dichloro-3-methylcyclopropanecarboxylic acid via crystallization of its salts with (+)- and (ⴒ)-α-phenylethylamine, and the transformation of the resulting enantiomers into (R)- and (S)-dimethyl 2-methylsuccinates. Tetrahedron: Asymmetry, 2011, 22, 26-30.	1.8	9
17	Synthesis of epothilones molecule fragment (15R)-C 13 -C 21 from D-mannitol. Russian Journal of Organic Chemistry, 2010, 46, 1702-1708.	0.8	6
18	Synthesis of (+)-disparlure from diethyl (â^')-malate via opening and fragmentation of the three-membered ring in tertiary cyclopropanols. Russian Journal of Organic Chemistry, 2009, 45, 1318-1324.	0.8	19