Jennifer H Wisecaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882077/publications.pdf

Version: 2024-02-01

43 papers

3,273 citations

218381 26 h-index 253896 43 g-index

53 all docs 53 docs citations

53 times ranked 4564 citing authors

#	Article	IF	CITATIONS
1	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	3.5	23
2	Integrative analysis of the shikonin metabolic network identifies new gene connections and reveals evolutionary insight into shikonin biosynthesis. Horticulture Research, 2022, 9, .	2.9	13
3	CHD Chromatin Remodeling Protein Diversification Yields Novel Clades and Domains Absent in Classic Model Organisms. Genome Biology and Evolution, 2022, 14, .	1.1	3
4	A De Novo Transcriptome Assembly of <i>Ceratopteris richardii </i> Provides Insights into the Evolutionary Dynamics of Complex Gene Families in Land Plants. Genome Biology and Evolution, 2021, 13, .	1.1	34
5	Conservation and diversification of <i>HAIRY MERISTEM</i> gene family in land plants. Plant Journal, 2021, 106, 366-378.	2.8	26
6	Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways. Microbiology Spectrum, 2021, 9, e0089821.	1.2	17
7	Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development. Scientific Reports, 2020, 10, 12073.	1.6	6
8	Reference Genome for the Highly Transformable <i>Setaria viridis</i> ME034V. G3: Genes, Genomes, Genetics, 2020, 10, 3467-3478.	0.8	36
9	Hybrid de novo genome assembly of red gromwell (Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. Horticulture Research, 2020, 7, 82.	2.9	31
10	The "Geddes―Composable Platform - An Evolution of Community Clusters for a Composable World. , 2020, , .		1
11	Horizontal Transfer of Bacterial Cytolethal Distending Toxin B Genes to Insects. Molecular Biology and Evolution, 2019, 36, 2105-2110.	3.5	36
12	The renaissance of comparative biochemistry. American Journal of Botany, 2019, 106, 3-13.	0.8	5
13	Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism. Fungal Genetics and Biology, 2019, 128, 60-73.	0.9	8
14	Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 2019, 8, .	3.3	167
15	Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi. Scientific Reports, 2018, 8, 5862.	1.6	28
16	Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell, 2018, 175, 1533-1545.e20.	13.5	445
17	integRATE: a desirability-based data integration framework for the prioritization of candidate genes across heterogeneous omics and its application to preterm birth. BMC Medical Genomics, 2018, 11, 107.	0.7	2
18	The birth, evolution and death of metabolic gene clusters in fungi. Nature Reviews Microbiology, 2018, 16, 731-744.	13.6	155

#	Article	IF	CITATIONS
19	Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus. MBio, 2018, 9, .	1.8	44
20	Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. ELife, $2018, 7, .$	2.8	67
21	A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants. Plant Cell, 2017, 29, 944-959.	3.1	225
22	Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. MSphere, 2017, 2, .	1.3	15
23	Genome Sequence of <i>Ophidiomyces ophiodiicola</i> , an Emerging Fungal Pathogen of Snakes. Genome Announcements, 2017, 5, .	0.8	8
24	Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biology, 2017, 15, e2003583.	2.6	187
25	Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4116-4121.	3.3	70
26	Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes. Molecular Biology and Evolution, 2016, 33, 1979-1987.	3.5	46
27	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	3.3	302
28	<tt>SICLE</tt> : a high-throughput tool for extracting evolutionary relationships from phylogenetic trees. PeerJ, 2016, 4, e2359.	0.9	4
29	Insights into transcriptional changes that accompany organelle sequestration from the stolen nucleus of Mesodinium rubrum. BMC Genomics, 2015, 16, 805.	1.2	30
30	Draft Genome Sequence of the Ale-Fermenting Saccharomyces cerevisiae Strain GSY2239. Genome Announcements, 2015, 3, .	0.8	5
31	Fungal metabolic gene clustersââ,¬â€caravans traveling across genomes and environments. Frontiers in Microbiology, 2015, 6, 161.	1.5	136
32	Clustering of Two Genes Putatively Involved in Cyanate Detoxification Evolved Recently and Independently in Multiple Fungal Lineages. Genome Biology and Evolution, 2015, 7, 789-800.	1.1	32
33	Examining the Evolution of the Regulatory Circuit Controlling Secondary Metabolism and Development in the Fungal Genus Aspergillus. PLoS Genetics, 2015, 11, e1005096.	1.5	70
34	The Evolution of Fungal Metabolic Pathways. PLoS Genetics, 2014, 10, e1004816.	1.5	183
35	The impact of automated filtering of BLAST-determined homologs in the phylogenetic detection of horizontal gene transfer from a transcriptome assembly. Molecular Phylogenetics and Evolution, 2014, 71, 184-192.	1.2	8
36	Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nature Communications, 2014, 5, 4784.	5.8	118

#	ARTICLE	IF	CITATION
37	Evolution of Saxitoxin Synthesis in Cyanobacteria and Dinoflagellates. Molecular Biology and Evolution, 2013, 30, 70-78.	3.5	152
38	Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates. Genome Biology and Evolution, 2013, 5, 2368-2381.	1.1	37
39	Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*. BMC Genomics, 2012, 13, 576.	1.2	52
40	ANALYSIS OF <i>ALEXANDRIUM TAMARENSE</i> (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE ¹ . Journal of Phycology, 2012, 48, 1130-1142.	1.0	29
41	Dinoflagellate Genome Evolution. Annual Review of Microbiology, 2011, 65, 369-387.	2.9	171
42	Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics, 2010, 11, 366.	1.2	94
43	The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial â€~mobilome'. Environmental Microbiology, 2009, 11, 2935-2951.	1.8	118