
Megan J Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820715/publications.pdf Version: 2024-02-01

MECAN I MUSON

#	Article	IF	CITATIONS
1	Characterization of a novel Lbx1 mouse loss of function strain. Differentiation, 2022, 123, 30-41.	1.0	5
2	Using RNA-Seq for Transcriptome Profiling of Botrylloides sp. Regeneration. Methods in Molecular Biology, 2022, 2450, 599-615.	0.4	3
3	Genetic association and characterization of <i>FSTL5</i> in isolated clubfoot. Human Molecular Genetics, 2021, 29, 3717-3728.	1.4	5
4	The molecular pathways underlying early gonadal development. Journal of Molecular Endocrinology, 2019, 62, R47-R64.	1.1	25
5	Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. Journal of Molecular Neuroscience, 2019, 69, 419-432.	1.1	7
6	Histone deacetylase activity is required for <i>Botrylloides leachii</i> whole body regeneration. Journal of Experimental Biology, 2019, 222, .	0.8	13
7	Genome-wide analysis of H3K4me3 and H3K27me3 modifications throughout the mouse urogenital ridge at E11.5. Gene Reports, 2019, 16, 100412.	0.4	3
8	De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Scientific Reports, 2018, 8, 5518.	1.6	36
9	Whole-Body Regeneration in the Colonial Tunicate Botrylloides leachii. Results and Problems in Cell Differentiation, 2018, 65, 337-355.	0.2	26
10	Hematological Analysis of the Ascidian <i>Botrylloides leachii</i> (Savigny, 1816) During Whole-Body Regeneration. Biological Bulletin, 2017, 232, 143-157.	0.7	27
11	Selection and evaluation of reference genes for analysis of mouse <i>(Mus musculus</i>) sex-dimorphic brain development. PeerJ, 2017, 5, e2909.	0.9	22
12	Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis. BMC Genomics, 2016, 17, 114.	1.2	34
13	Novel keratin preparation supports growth and differentiation of odontoblastâ€like cells. International Endodontic Journal, 2016, 49, 471-482.	2.3	23
14	Evolution of the Sox gene family within the chordate phylum. Gene, 2016, 575, 385-392.	1.0	35
15	Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia. American Journal of Human Genetics, 2015, 97, 837-847.	2.6	22
16	Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway. Gene Expression Patterns, 2015, 19, 45-51.	0.3	27
17	Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera). EvoDevo, 2014, 5, 11.	1.3	33
18	RNA localization in the honeybee (Apis mellifera) oocyte reveals insights about the evolution of RNA localization mechanisms. Developmental Biology, 2013, 375, 193-201.	0.9	5

MEGAN J WILSON

#	Article	IF	CITATIONS
19	Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera) embryos reveals a role in regulating early embryonic patterning. BMC Evolutionary Biology, 2012, 12, 211.	3.2	18
20	Pair-Rule Gene Orthologues Have Unexpected Maternal Roles in the Honeybee (Apis mellifera). PLoS ONE, 2012, 7, e46490.	1.1	29
21	The evolution of oocyte patterning in insects: multiple cell-signaling pathways are active during honeybee oogenesis and are likely to play a role in axis patterning. Evolution & Development, 2011, 13, 127-137.	1.1	28
22	Diversity in insect axis formation: two <i>orthodenticle</i> genes and <i>hunchback</i> act in anterior patterning and influence dorsoventral organization in the honeybee (<i>Apis mellifera</i>). Development (Cambridge), 2011, 138, 3497-3507.	1.2	36
23	Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Development Genes and Evolution, 2010, 220, 179-190.	0.4	21
24	Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Developmental Biology, 2010, 339, 200-211.	0.9	54
25	Immunohistochemistry on Honeybee <i>(Apis mellifera)</i> Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5227.	0.2	3
26	In Situ Hybridization of Sectioned Honeybee <i>(Apis mellifera)</i> Tissues: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5226.	0.2	1
27	RNA Interference (RNAi) in Honeybee <i>(Apis mellifera)</i> Embryos: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5228.	0.2	8
28	Fixation and Storage of Honeybee (Apis mellifera) Tissues. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5224-pdb.prot5224.	0.2	6
29	Whole-Mount In Situ Hybridization of Honeybee (Apis mellifera) Tissues. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5225-pdb.prot5225.	0.2	6
30	Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Developmental Biology, 2009, 335, 276-287.	0.9	46
31	The Honeybee <i>Apis mellifera</i> . Cold Spring Harbor Protocols, 2009, 2009, pdb.emo123.	0.2	11
32	Evolution of the insect Sox genes. BMC Evolutionary Biology, 2008, 8, 120.	3.2	53
33	Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics, 2008, 9, 558.	1.2	19
34	Retinoid Signaling Determines Germ Cell Fate in Mice. Science, 2006, 312, 596-600.	6.0	888
35	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	13.7	1,648
36	The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. Molecular Reproduction and Development, 2006, 73, 531-539.	1.0	17

MEGAN J WILSON

#	Article	IF	CITATIONS
37	Patterns of conservation and change in honey bee developmental genes. Genome Research, 2006, 16, 1376-1384.	2.4	139
38	Mutational Analysis of an Extracytoplasmic-Function Sigma Factor To Investigate Its Interactions with RNA Polymerase and DNA. Journal of Bacteriology, 2006, 188, 1935-1942.	1.0	27
39	Osteopontin and related SIBLING glycoprotein genes are expressed by Sertoli cells during mouse testis development. Developmental Dynamics, 2005, 233, 1488-1495.	0.8	16
40	Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction, 2005, 130, 509-516.	1.1	48
41	The Transcription Factors Steroidogenic Factor-1 and SOX9 Regulate Expression of Vanin-1 during Mouse Testis Development. Journal of Biological Chemistry, 2005, 280, 5917-5923.	1.6	72
42	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.	0.9	251
43	Expression of the tudor-related gene Tdrd5 during development of the male germline in mice. Gene Expression Patterns, 2004, 4, 701-705.	0.3	34
44	HMG box transcription factor geneHbp1 is expressed in germ cells of the developing mouse testis. Developmental Dynamics, 2004, 230, 366-370.	0.8	15
45	SOX8 Is Expressed during Testis Differentiation in Mice and Synergizes with SF1 to Activate the Amh Promoter in Vitro. Journal of Biological Chemistry, 2003, 278, 28101-28108.	1.6	154
46	Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Current Opinion in Genetics and Development, 2002, 12, 441-446.	1.5	279
47	Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Molecular Microbiology, 2002, 45, 1177-1190.	1.2	255
48	Analysis of Promoters Recognized by PvdS, an Extracytoplasmic-Function Sigma Factor Protein from Pseudomonas aeruginosa. Journal of Bacteriology, 2001, 183, 2151-2155.	1.0	83
49	Characterization of an Endoprotease (PrpL) Encoded by a PvdS-Regulated Gene in Pseudomonas aeruginosa. Infection and Immunity, 2001, 69, 5385-5394.	1.0	174
50	Characterization of an ECF Sigma Factor Protein from Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 2000, 273, 578-583.	1.0	51