
John M Mcevoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/882066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Cryptosporidium ratti</i> n. sp. (Apicomplexa: Cryptosporidiidae) and genetic diversity of <i>Cryptosporidium</i> spp. in brown rats (<i>Rattus norvegicus</i>) in the Czech Republic. Parasitology, 2021, 148, 84-97.	0.7	24
2	Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitologica, 2021, 68, .	0.7	9
3	Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria (Myocastor coypus). Microorganisms, 2021, 9, 813.	1.6	35
4	Photolytic fate of (E)- and (Z)-endoxifen in water and treated wastewater exposed to sunlight. Environmental Research, 2021, 197, 111121.	3.7	0
5	Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels (Sciurus) Tj ETQq1	1 0,78431 1.6	4 rgBT /Over
6	lron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. Environmental Pollution, 2021, 289, 117825.	3.7	10
7	Photodegradation of (E)- and (Z)-Endoxifen in water by ultraviolet light: Efficiency, kinetics, by-products, and toxicity assessment. Water Research, 2020, 171, 115451.	5.3	6
8	Virgin (FeO) and microbially regenerated (Fe2+) iron turning waste for treating chlorinated pesticides in water. Journal of Hazardous Materials, 2020, 398, 122980.	6.5	12
9	Description of Cryptosporidium ornithophilus n. sp. (Apicomplexa: Cryptosporidiidae) in farmed ostriches. Parasites and Vectors, 2020, 13, 340.	1.0	35
10	A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and Cryptosporidium baileyi oocysts. European Journal of Protistology, 2020, 75, 125718.	0.5	1
11	Abundance and activity of ammonia oxidizing archaea and bacteria in bulk water and biofilm in water supply systems practicing chlorination and chloramination: Full and laboratory scale investigations. Science of the Total Environment, 2020, 715, 137043.	3.9	13
12	Diversity of <i>Cryptosporidium</i> in common voles and description of <i>Cryptosporidium alticolis</i> sp. n. and <i>Cryptosporidium microti</i> sp. n. (Apicomplexa: Cryptosporidiidae). Parasitology, 2019, 146, 220-233.	0.7	31
13	The transcriptome of Cryptosporidium oocysts and intracellular stages. Scientific Reports, 2019, 9, 7856.	1.6	21
14	Iron turning waste media for treating Endosulfan and Heptachlor contaminated water. Science of the Total Environment, 2019, 685, 124-133.	3.9	18
15	Diversity of Cryptosporidium spp. in Apodemus spp. in Europe. European Journal of Protistology, 2019, 69, 1-13.	0.5	20
16	Cryptosporidium proventriculi sp. n. (Apicomplexa: Cryptosporidiidae) in Psittaciformes birds. European Journal of Protistology, 2019, 69, 70-87.	0.5	52
17	Phage shock protein and gene responses of Escherichia coli exposed to carbon nanotubes. Chemosphere, 2019, 224, 461-469.	4.2	15
18	Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. Chemosphere, 2019, 223, 455-464.	4.2	51

ЈОНN Μ ΜCEVOY

#	Article	IF	CITATIONS
19	ExperimentalEncephalitozoon cuniculiInfection Acquired from Fermented Meat Products. Foodborne Pathogens and Disease, 2019, 16, 394-398.	0.8	7
20	Cryptosporidium apodemi sp. n. and Cryptosporidium ditrichi sp. n. (Apicomplexa: Cryptosporidiidae) in Apodemus spp European Journal of Protistology, 2018, 63, 1-12.	0.5	56
21	Cryptosporidium occultus sp. n. (Apicomplexa: Cryptosporidiidae) in rats. European Journal of Protistology, 2018, 63, 96-104.	0.5	46
22	<i>Cryptosporidium</i> infecting wild cricetid rodents from the subfamilies Arvicolinae and Neotominae. Parasitology, 2018, 145, 326-334.	0.7	14
23	Host specificity and age-dependent resistance to Cryptosporidium avium infection in chickens, ducks and pheasants. Experimental Parasitology, 2018, 191, 62-65.	0.5	11
24	First description of Cryptosporidium ubiquitum XIIa subtype family in farmed fur animals. European Journal of Protistology, 2017, 59, 108-113.	0.5	15
25	Native and introduced squirrels in Italy host different Cryptosporidium spp European Journal of Protistology, 2017, 61, 64-75.	0.5	26
26	Seasonal variation and ex-situ nitrification activity of ammonia oxidizing archaea in biofilm based wastewater treatment processes. Bioresource Technology, 2017, 244, 850-859.	4.8	52
27	Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitology Research, 2016, 115, 2243-2251.	0.6	82
28	Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Science of the Total Environment, 2016, 565, 857-862.	3.9	31
29	Mitigation of bactericidal effect of carbon nanotubes by cell entrapment. Science of the Total Environment, 2016, 565, 787-794.	3.9	8
30	Cryptosporidium parvum and Enterocytozoon bieneusi in American Mustangs and Chincoteague ponies. Experimental Parasitology, 2016, 162, 24-27.	0.5	24
31	Encephalitozoon cuniculi in Raw Cow's Milk Remains Infectious After Pasteurization. Foodborne Pathogens and Disease, 2016, 13, 77-79.	0.8	10
32	Cryptosporidium galli and novel Cryptosporidium avian genotype VI in North American red-winged blackbirds (Agelaius phoeniceus). Parasitology Research, 2016, 115, 1901-1906.	0.6	25
33	Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere, 2016, 144, 352-359.	4.2	71
34	Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite. International Journal for Parasitology, 2016, 46, 67-74.	1.3	10
35	Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals. PLoS ONE, 2016, 11, e0147090.	1.1	68
36	Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitologica, 2016, 63, .	0.7	22

3

JOHN M MCEVOY

#	Article	IF	CITATIONS
37	Cryptosporidium testudinis sp. n., Cryptosporidium ducismarci Traversa, 2010 and Cryptosporidium tortoise genotype III (Apicomplexa: Cryptosporidiidae) in tortoises. Folia Parasitologica, 2016, 63, .	0.7	49
38	Subtyping Novel Zoonotic Pathogen Cryptosporidium Chipmunk Genotype I. Journal of Clinical Microbiology, 2015, 53, 1648-1654.	1.8	57
39	Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus). Infection, Genetics and Evolution, 2015, 32, 113-123.	1.0	21
40	The effect of single-walled carbon nanotubes on Escherichia coli: multiple indicators of viability. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
41	Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (lk) in a horse. Veterinary Parasitology, 2015, 208, 135-142.	0.7	69
42	Genetic diversity of Cryptosporidium spp. including novel identification of the Cryptosporidium muris and Cryptosporidium tyzzeri in horses in the Czech Republic and Poland. Parasitology Research, 2015, 114, 1619-1624.	0.6	29
43	Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. Journal of Hazardous Materials, 2015, 290, 127-133.	6.5	58
44	Novel Cryptosporidium bat genotypes III and IV in bats from the USA and Czech Republic. Parasitology Research, 2015, 114, 3917-3921.	0.6	19
45	North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes. Infection, Genetics and Evolution, 2015, 36, 287-293.	1.0	28
46	Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing. PLoS ONE, 2015, 10, e0128043.	1.1	20
47	Gastroenteritis Caused by the Cryptosporidium Hedgehog Genotype in an Immunocompetent Man. Journal of Clinical Microbiology, 2014, 52, 347-349.	1.8	28
48	Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
49	Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs. Veterinary Parasitology, 2014, 201, 9-17.	0.7	53
50	Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation. Water Research, 2014, 54, 318-326.	5.3	18
51	Age related susceptibility of pigs to Cryptosporidium scrofarum infection. Veterinary Parasitology, 2014, 202, 330-334.	0.7	12
52	Reduction Of Bactericidal Effect Of Functionalized Carbon Nanotubes By Cell Entrapment. Proceedings of the Water Environment Federation, 2014, 2014, 7087-7101.	0.0	0
53	Cryptosporidiosis in Other Vertebrates. , 2014, , 237-323.		21
54	Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus). International Journal for Parasitology, 2013, 43, 805-817.	1.3	48

ЈОНN Μ ΜCEVOY

#	Article	IF	CITATIONS
55	Enricher reactor – Permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions. Bioresource Technology, 2013, 146, 336-344.	4.8	6
56	Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa). Veterinary Parasitology, 2013, 191, 218-227.	0.7	76
57	The Lesser Egyptian Gerbil (Gerbillus gerbillus) is a suitable host for the long-term propagation of Cryptosporidium andersoni. Experimental Parasitology, 2013, 134, 438-442.	0.5	3
58	Cryptosporidium suis and Cryptosporidium scrofarum in Eurasian wild boars (Sus scrofa) in Central Europe. Veterinary Parasitology, 2013, 197, 504-508.	0.7	20
59	Effect of carbon source during enrichment on BTEX degradation by anaerobic mixed bacterial cultures. Biodegradation, 2013, 24, 279-293.	1.5	7
60	Human Cryptosporidiosis Caused by <i>Cryptosporidium tyzzeri</i> and <i>C. parvum</i> Isolates Presumably Transmitted from Wild Mice. Journal of Clinical Microbiology, 2013, 51, 360-362.	1.8	43
61	Evidence that Cryptosporidium parvum Populations Are Panmictic and Unstructured in the Upper Midwest of the United States. Applied and Environmental Microbiology, 2012, 78, 8096-8101.	1.4	45
62	Cryptosporidium tyzzeri and Cryptosporidium muris originated from wild West-European house mice (Mus musculus domesticus) and East-European house mice (Mus musculus musculus) are non-infectious for pigs. Experimental Parasitology, 2012, 131, 107-110.	0.5	24
63	Effects of entrapment on nucleic acid content, cell morphology, cell surface property, and stress of pure cultures commonly found in biological wastewater treatment. Applied Microbiology and Biotechnology, 2011, 92, 407-418.	1.7	9
64	A new method to determine initial viability of entrapped cells using fluorescent nucleic acid staining. Bioresource Technology, 2011, 102, 1622-1627.	4.8	14
65	Effects of cell entrapment on nucleic acid content and microbial diversity of mixed cultures in biological wastewater treatment. Bioresource Technology, 2011, 102, 3176-3183.	4.8	12
66	Diffusion and Treatability Studies with Biopolymer Encapsulated Zero-Valent Iron Nanoparticles. , 2011, , .		0
67	Role of Manure Application on Soil in Preventing Groundwater Contamination by <1>Cryptosporidium 1 . Proceedings of the Water Environment Federation, 2011, 2011, 7005-7015.	0.0	Ο
68	Groundwater Remediation Using an Enricher Reactor—Permeable Reactive Biobarrier for Periodically Absent Contaminants. Water Environment Research, 2011, 83, 603-612.	1.3	7
69	Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzyme and Microbial Technology, 2010, 47, 166-173.	1.6	16
70	Antimicrobial resistance profiling and molecular subtyping of Campylobacter spp. from processed turkey. BMC Microbiology, 2009, 9, 203.	1.3	20
71	<i>Cryptosporidium</i> in commercially produced turkeys on-farm and postslaughter. Letters in Applied Microbiology, 2009, 48, 302-306.	1.0	20
72	A feasibility study of immobilized and free mixed culture bioaugmentation for treating atrazine in infiltrate. Journal of Hazardous Materials, 2009, 168, 1373-1379.	6.5	13

ЈОНN Μ ΜCEVOY

#	Article	IF	CITATIONS
73	Atrazine removal in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a: A sand column study. Chemosphere, 2009, 74, 308-313.	4.2	36
74	Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. Journal of Applied Microbiology, 2009, 106, 986-992.	1.4	51
75	Effect of Cell-to-matrix Ratio in Polyvinyl Alcohol Immobilized Pure and Mixed Cultures on Atrazine Degradation. Water, Air and Soil Pollution, 2008, 8, 257-266.	0.8	39
76	High prevalence of Cryptosporidium bovis and the deer-like genotype in calves compared to mature cows in beef cow-calf operations. Veterinary Parasitology, 2008, 151, 191-195.	0.7	38
77	Atrazine remediation in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a. Water Science and Technology, 2008, 58, 2155-2163.	1.2	1
78	Adding a selective enrichment step to the iQ-CheckTM real-time PCR improves the detection of Salmonella in naturally contaminated retail turkey meat products. Letters in Applied Microbiology, 2006, 43, 78-83.	1.0	23
79	Evidence Supporting Zoonotic Transmission of Cryptosporidium spp. in Wisconsin. Journal of Clinical Microbiology, 2006, 44, 4303-4308.	1.8	185
80	The effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum on beef surfaces. Journal of Applied Microbiology, 2005, 98, 618-623.	1.4	20
81	An Evaluation of Sampling Methods for the Detection of Escherichia coli and Salmonella on Turkey Carcasses. Journal of Food Protection, 2005, 68, 34-39.	0.8	18
82	Prevalence and characterisation of <i>Cryptosporidium</i> species in cattle faeces and on beef carcases at slaughter. Veterinary Record, 2005, 156, 165-168.	0.2	20
83	The prevalence and characterisation of Cryptosporidium spp. in beef abattoir water supplies. Water Research, 2005, 39, 3697-3703.	5.3	10
84	Development of a novel method for isolating and detecting Cryptosporidium parvum from lean and fat beef carcass surfaces. Food Microbiology, 2004, 21, 275-282.	2.1	8
85	Microbial contamination on beef in relation to hygiene assessment based on criteria used in EU Decision 2001/471/EC. International Journal of Food Microbiology, 2004, 92, 217-225.	2.1	73
86	Effect of a commercial freeze/tempering process on the viability of Cryptosporidium parvum oocysts on lean and fat beef trimmings. Meat Science, 2004, 67, 559-564.	2.7	5
87	The prevalence of Salmonella spp. in bovine faecal, rumen and carcass samples at a commercial abattoir. Journal of Applied Microbiology, 2003, 94, 693-700.	1.4	69
88	The prevalence and spread of Escherichia coli O157:H7 at a commercial beef abattoir. Journal of Applied Microbiology, 2003, 95, 256-266.	1.4	107
89	The effects of treating bovine hide with steam at subatmospheric pressure on bacterial numbers and leather quality. Letters in Applied Microbiology, 2003, 37, 344-348.	1.0	10
90	Use of Steam Condensing at Subatmospheric Pressures To Reduce Escherichia coli O157:H7 Numbers on Bovine Hide. Journal of Food Protection, 2001, 64, 1655-1660.	0.8	28

#	Article	IF	CITATIONS
91	The relationship between hide cleanliness and bacterial numbers on beef carcasses at a commercial abattoir. Letters in Applied Microbiology, 2000, 30, 390-395.	1.0	119