List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1127-1142.	6.6	533
2	Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 2006, 57, 1181-1199.	4.8	385
3	The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 2010, 61, 495-506.	5.7	268
4	Loss of Halophytism by Interference with SOS1 Expression. Plant Physiology, 2009, 151, 210-222.	4.8	254
5	Regulation of K+ Nutrition in Plants. Frontiers in Plant Science, 2019, 10, 281.	3.6	217
6	Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1806-14.	7.1	171
7	A Critical Role of Sodium Flux via the Plasma Membrane Na ⁺ /H ⁺ Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiology, 2019, 180, 1046-1065.	4.8	149
8	How do vacuolar NHX exchangers function in plant salt tolerance?. Plant Signaling and Behavior, 2010, 5, 792-795.	2.4	147
9	Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytologist, 1989, 111, 155-160.	7.3	119
10	Expression of wheat Na+/H+ antiporter TNHXS1 and H+- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Molecular Biology, 2012, 79, 137-155.	3.9	107
11	Is salinity tolerance related to Na accumulation in Upland cotton (Gossypium hirsutum) seedlings?. Plant and Soil, 1997, 190, 67-75.	3.7	104
12	A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports, 2014, 33, 277-288.	5.6	94
13	Nitrogen and phosphorus availability limit N 2 fixation in bean. New Phytologist, 2000, 147, 337-346.	7.3	89
14	Physiological aspects of ammonium and nitrate fertilization. Journal of Plant Nutrition, 1990, 13, 1271-1289.	1.9	67
15	Salinity and nitrogen nutrition studies on peanut and cotton plants. Journal of Plant Nutrition, 1992, 15, 591-604.	1.9	66
16	Wheat growth as affected by nitrogen type, pH and salinity. I. biomass production and mineral composition. Journal of Plant Nutrition, 1991, 14, 235-246.	1.9	53
17	Variation in carbon isotope discrimination and other traits related to drought tolerance in upland conditions. Field Crops Research, 1999, 61, 109-123.	5.1	50
18	Stabilized municipal sewage sludge addition to improve properties of an acid mine soil for plant growth. Journal of Soils and Sediments, 2014, 14, 703-712.	3.0	40

#	Article	IF	CITATIONS
19	Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 2018, 51, 86-93.	3.4	38
20	Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis. Plant and Soil, 2010, 328, 411-420.	3.7	37
21	Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels. Field Crops Research, 1991, 26, 35-44.	5.1	33
22	Subcellular distribution of superoxide dismutase in leaves of ureide-producing leguminous plants. Physiologia Plantarum, 1991, 82, 285-291.	5.2	31
23	Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. Journal of Environmental Sciences, 2011, 23, 444-452.	6.1	31
24	Effects of silicon on copper toxicity in Erica andevalensis Cabezudo and Rivera: a potential species to remediate contaminated soils. Journal of Environmental Monitoring, 2011, 13, 591.	2.1	29
25	Wheat growth as affected by nitrogen type, pH and salinity. II. photosynthesis and transpiration. Journal of Plant Nutrition, 1991, 14, 247-256.	1.9	28
26	Accumulation and in vivo tissue distribution of pollutant elements in Erica andevalensis. Science of the Total Environment, 2009, 407, 1929-1936.	8.0	22
27	Phenotypic and Genotypic Characterization of Rhizobia from Diverse Geographical Origin that Nodulate Pachyrhizus species. Systematic and Applied Microbiology, 2004, 27, 737-745.	2.8	21
28	Selection and characterization of cotton cultivars for dryland production in the south-west of Spain. European Journal of Agronomy, 1995, 4, 119-126.	4.1	18
29	Evaluation of biochemical indicators of Fe and Mn nutrition for soybean plants. II. Superoxide dismutases, chlorophyll contents and photosystem II activity. Journal of Plant Nutrition, 1987, 10, 261-271.	1.9	17
30	Plant Responses to Salinity. , 2010, , 129-141.		17
31	Assessing the Nutritional Value of Root and Tuber Crops from Bolivia and Peru. Foods, 2019, 8, 526.	4.3	17
32	Ahipa (Pachyrhizus ahipa [Wedd.] Parodi): an alternative legume crop for sustainable production of starch, oil and protein. Industrial Crops and Products, 2003, 17, 27-37.	5.2	16
33	Germination responses of <i>Erica andevalensis</i> to different chemical and physical treatments. Ecological Research, 2009, 24, 655-661.	1.5	15
34	Evaluation of Lead Toxicity in <i>Erica andevalensis</i> as an Alternative Species for Revegetation of Contaminated Soils. International Journal of Phytoremediation, 2012, 14, 174-185.	3.1	15
35	A review of hazardous elements tolerance in a metallophyte model species: Erica andevalensis. Geoderma, 2018, 319, 43-51.	5.1	15
36	Interaction effects between Rhizobium strain and bean cultivar on nodulation, plant growth, biomass partitioning and xylem sap composition. European Journal of Agronomy, 1999, 11, 131-143.	4.1	14

#	Article	IF	CITATIONS
37	Stress responses of Erica andevalensis Cabezudo & Rivera plants induced by polluted water from Tinto River (SW Spain). Ecotoxicology, 2009, 18, 1058-1067.	2.4	13
38	Reassessing the Role of Potassium in Tomato Grown with Water Shortages. Horticulturae, 2021, 7, 20.	2.8	13
39	Tolerance to high Zn in the metallophyte Erica andevalensis Cabezudo & Rivera. Ecotoxicology, 2012, 21, 2012-2021.	2.4	12
40	Factors affecting root and seed yield in ahipa (Pachyrhizus ahipa (Wedd.) Parodi), a multipurpose legume crop. European Journal of Agronomy, 2004, 20, 395-403.	4.1	11
41	Genotypic Variation in Potassium Uptake in Dryland Cotton. Journal of Plant Nutrition, 2008, 31, 1947-1962.	1.9	11
42	Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay. Environmental Geochemistry and Health, 2020, 42, 4073-4086.	3.4	11
43	Effect of NaCl salinity on photosynthesis, 14C-translocation, and yield in wheat plants irrigated with ammonium or nitrate solutions. Irrigation Science, 1990, 11, 155.	2.8	9
44	Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. Physiologia Plantarum, 2018, 163, 88-102.	5.2	9
45	A Role for manganese in the Regulation of Soybean Nitrate Reductase Activity?. Journal of Plant Physiology, 1985, 118, 335-342.	3.5	8
46	Evaluation of catalase and peroxidase activity as indicators of Fe and Mn nutrition for soybean. Journal of Plant Nutrition, 1986, 9, 1239-1249.	1.9	8
47	Does the polluted environment modify responses to metal pollution? A case study of two Cistus species and the excess of copper and lead. Catena, 2019, 178, 244-255.	5.0	8
48	Sotbean genetic differences in response to Fe and Mn: Activity of metalloenzymes. Plant and Soil, 1987, 99, 139-146.	3.7	7
49	Active proton efflux, nutrient retention and boron-bridging of pectin are related to greater tolerance of proton toxicity in the roots of two Erica species. Plant Physiology and Biochemistry, 2018, 126, 142-151.	5.8	7
50	Peroxidase Isozyme Patterns Developed by Soybean Genotypes in Response to Manganese and Iron Stress. Biochemie Und Physiologie Der Pflanzen, 1989, 185, 391-396.	0.5	6
51	Leaf Gas Exchange of Pachyrhizus ahipa and P. erosus Under Water and Temperature Stress. Photosynthetica, 2002, 40, 375-381.	1.7	5
52	Strategies in a metallophyte species to cope with manganese excess. Environmental Geochemistry and Health, 2021, 43, 1523-1535.	3.4	5
53	ASSESSMENT OF NITROGEN FIXATION POTENTIAL IN AHIPA (<i>Pachyrhizus ahipa</i>) AND ITS EFFECT ON ROOT AND SEED YIELD. Experimental Agriculture, 2009, 45, 177-188.	0.9	4
54	Nitrate and potassium concentrations in cotton petiole extracts as influenced by nitrogen fertilization, sampling date and cultivar. Spanish Journal of Agricultural Research, 2010, 8, 202.	0.6	4

#	Article	IF	CITATIONS
55	Nutrient Requirements of Ahipa, a Tuberous-Root Crop. Journal of Plant Nutrition, 2004, 27, 931-945.	1.9	3
56	Uptake of Micro and Macronutrients in Relation to Increasing Mn Concentrations in Cistus salvifolius L. Grown in Hydroponic Cultures. Journal of Environmental Accounting and Management, 2018, 6, 355-363.	0.5	1
57	Salt and Water Stress-Tolerant Cotton. Biotechnology in Agriculture and Forestry, 1998, , 227-242.	0.2	Ο
58	Variation in Nutritional Components in Roots from Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) Accessions and an Interspecific Hybrid (P. ahipa × P. tuberosus (Lam.) Spreng.). Agronomy, 2022, 12, 5.	3.0	0