Chuanxiao Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820498/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>b<scp>HLH</scp>122</i> is important for drought and osmotic stress resistance in <i><scp>A</scp>rabidopsis</i> and in the repression of <scp>ABA</scp> catabolism. New Phytologist, 2014, 201, 1192-1204.	7.3	242
2	An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Scientific Reports, 2016, 6, 23890.	3.3	212
3	Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19585-19590.	7.1	202
4	Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017, 68, 2641-2666.	4.8	197
5	CRISPR/Cas9: A powerful tool for crop genome editing. Crop Journal, 2016, 4, 75-82.	5.2	150
6	Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves and Roots. PLoS ONE, 2011, 6, e28009.	2.5	146
7	Whole-genome strategies for marker-assisted plant breeding. Molecular Breeding, 2012, 29, 833-854.	2.1	129
8	Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines. PLoS ONE, 2011, 6, e29229.	2.5	110
9	Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Research, 2011, 124, 37-45.	5.1	92
10	Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica, 2010, 174, 165-177.	1.2	89
11	Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Molecular Breeding, 2012, 30, 407-418.	2.1	83
12	RNAâ€guided Cas9 as an <i>inÂvivo</i> desiredâ€ŧarget mutator in maize. Plant Biotechnology Journal, 2017, 15, 1566-1576.	8.3	82
13	Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Annals of Botany, 2013, 112, 633-642.	2.9	73
14	Genetic Contribution to Advanced Yield for Maize Hybrids Released from 1970 to 2000 in China. Crop Science, 2011, 51, 13-20.	1.8	69
15	Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 2016, 17, 915.	2.8	63
16	Genome Editing and Double-Fluorescence Proteins Enable Robust Maternal Haploid Induction and Identification in Maize. Molecular Plant, 2018, 11, 1214-1217.	8.3	61
17	Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop Journal, 2020, 8, 449-456.	5.2	55
18	Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131, 1699-1714.	3.6	53

CHUANXIAO XIE

#	Article	IF	CITATIONS
19	Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. Journal of Integrative Plant Biology, 2011, 53, 641-652.	8.5	52
20	Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 2019, 17, 1853-1855.	8.3	52
21	Inferring Genome Ancestry and Estimating Molecular Relatedness Among 187 Chinese Maize Inbred Lines. Journal of Genetics and Genomics, 2007, 34, 738-748.	3.9	48
22	Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 2012, 185, 395-406.	1.2	46
23	CRISPR/Cas9-mediated genome editing in plants. Methods, 2017, 121-122, 94-102.	3.8	46
24	Metaâ€analysis and candidate gene mining of lowâ€phosphorus tolerance in maize. Journal of Integrative Plant Biology, 2014, 56, 262-270.	8.5	44
25	Genome Editing Enables Next-Generation Hybrid Seed Production Technology. Molecular Plant, 2020, 13, 1262-1269.	8.3	42
26	Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Euphytica, 2011, 180, 281.	1.2	41
27	Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. Crop Journal, 2017, 5, 83-88.	5.2	35
28	Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop Journal, 2018, 6, 314-320.	5.2	26
29	Molecular Mapping of the Major Resistance Quantitative Trait Locus <i>qHS2.09</i> with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Phytopathology, 2012, 102, 692-699.	2.2	22
30	Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. Theoretical and Applied Genetics, 2016, 129, 2333-2342.	3.6	20
31	Large-Scale Evaluation of Maize Germplasm for Low-Phosphorus Tolerance. PLoS ONE, 2015, 10, e0124212.	2.5	18
32	Association Analysis of the nced and rab28 Genes with Phenotypic Traits Under Water Stress in Maize. Plant Molecular Biology Reporter, 2011, 29, 714-722.	1.8	17
33	A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13. Science China Life Sciences, 2022, 65, 1456-1465.	4.9	16
34	Establishment of an efficient seed fluorescence reporterâ€assisted CRISPR/Cas9 gene editing in maize. Journal of Integrative Plant Biology, 2021, 63, 1671-1680.	8.5	14
35	Targeted generation of Null Mutants in <i>ZmGDlα</i> confers resistance against maize rough dwarf disease without agronomic penalty. Plant Biotechnology Journal, 2022, 20, 803-805.	8.3	14
36	Identification and functional characterization of the <i>AGO1</i> ortholog in maize. Journal of Integrative Plant Biology, 2016, 58, 749-758.	8.5	12

CHUANXIAO XIE

#	Article	IF	CITATIONS
37	Zea mays (L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes. Crop Journal, 2013, 1, 15-24.	5.2	10
38	An analysis of the polymorphisms in a gene for being involved in drought tolerance in maize. Genetica, 2011, 139, 479-487.	1.1	9
39	Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits. BMC Plant Biology, 2022, 22, .	3.6	6
40	Kernel lysine content does not increase in some maize opaque2 mutants. Planta, 2012, 235, 205-215.	3.2	5
41	A simple way to visualize detailed phylogenetic tree of huge genome-wide SNP data constructed by SNPhylo. Journal of Integrative Agriculture, 2018, 17, 1972-1978.	3.5	5
42	Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics. Frontiers of Agriculture in China, 2008, 2, 365-371.	0.2	4