
## Xie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820447/publications.pdf Version: 2024-02-01



Χιε Ζηλνις

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Defect tolerance in halide perovskites: A first-principles perspective. Journal of Applied Physics, 2022, 131, .                                                                                           | 1.1  | 35        |
| 2  | Origin of Efficiency Enhancement by Lattice Expansion in Hybrid-Perovskite Solar Cells. Physical<br>Review Letters, 2022, 128, 136401.                                                                     | 2.9  | 28        |
| 3  | Comment on "Wideâ€Rangeâ€Tunable <i>p</i> â€Type Conductivity of Transparent<br>Cul <sub>1â€x</sub> Br <sub>x</sub> Alloy― Advanced Functional Materials, 2022, 32, .                                      | 7.8  | 4         |
| 4  | Switchable and Strainâ€Releasable Mgâ€lon Diffusion Nanohighway Enables Highâ€Capacity and Longâ€Life<br>Pyrovanadate Cathode. Small, 2022, 18, .                                                          | 5.2  | 4         |
| 5  | Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nature Materials, 2021, 20, 971-976.                                                                                          | 13.3 | 92        |
| 6  | All-inorganic halide perovskites as candidates for efficient solar cells. Cell Reports Physical Science,<br>2021, 2, 100604.                                                                               | 2.8  | 28        |
| 7  | Firstâ€Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. Advanced<br>Energy Materials, 2020, 10, 1902830.                                                                   | 10.2 | 52        |
| 8  | Anomalous Auger Recombination in PbSe. Physical Review Letters, 2020, 125, 037401.                                                                                                                         | 2.9  | 16        |
| 9  | Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism. Physical Review B, 2020, 102, .                          | 1.1  | 15        |
| 10 | Mechanism of collective interstitial ordering in Fe–C alloys. Nature Materials, 2020, 19, 849-854.                                                                                                         | 13.3 | 32        |
| 11 | Hidden role of Bi incorporation in nonradiative recombination in methylammonium lead iodide.<br>Journal of Materials Chemistry A, 2020, 8, 12964-12967.                                                    | 5.2  | 18        |
| 12 | Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Science Advances, 2020, 6, eaay4900.                                                                                        | 4.7  | 24        |
| 13 | Correctly Assessing Defect Tolerance in Halide Perovskites. Journal of Physical Chemistry C, 2020, 124,<br>6022-6027.                                                                                      | 1.5  | 70        |
| 14 | Re-examination of complexation behaviors of V( <scp>v</scp> ) and V( <scp>iv</scp> ): experimental investigation and theoretical simulation. Journal of Analytical Atomic Spectrometry, 2020, 35, 878-885. | 1.6  | 5         |
| 15 | lodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Physical Review B, 2020, 101, .                                                                                       | 1.1  | 76        |
| 16 | First-Principles Understanding of Strong Auger Recombination in Hybrid Perovskites. ECS Meeting Abstracts, 2019, , .                                                                                       | 0.0  | 0         |
| 17 | Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization. Acta Materialia, 2018, 152, 107-118.                                                    | 3.8  | 13        |
| 18 | Interface dominated cooperative nanoprecipitation in interstitial alloys. Nature Communications, 2018, 9, 4017.                                                                                            | 5.8  | 12        |

XIE ZHANG

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | First-Principles Analysis of Radiative Recombination in Lead-Halide Perovskites. ACS Energy Letters, 2018, 3, 2329-2334.                                               | 8.8  | 81        |
| 20 | Unexpectedly Strong Auger Recombination in Halide Perovskites. Advanced Energy Materials, 2018, 8,<br>1801027.                                                         | 10.2 | 64        |
| 21 | Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions. Journal of<br>Physical Chemistry Letters, 2018, 9, 2903-2908.              | 2.1  | 50        |
| 22 | Tunable twin stability and an accurate magnesium interatomic potential for dislocation-twin interactions. Materials and Design, 2018, 153, 232-241.                    | 3.3  | 16        |
| 23 | Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg. Npj Computational Materials, 2017, 3, .                  | 3.5  | 28        |
| 24 | Origin of Structural Modulations in Ultrathin Fe Films on Cu(001). Physical Review Letters, 2017, 118, 236101.                                                         | 2.9  | 5         |
| 25 | Effects of Aluminum on Hydrogen Solubility and Diffusion in Deformed Fe-Mn Alloys. Advances in<br>Materials Science and Engineering, 2016, 2016, 1-9.                  | 1.0  | 3         |
| 26 | Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content. Jom, 2016,<br>68, 2520-2524.                                                | 0.9  | 13        |
| 27 | Interplay between interstitial displacement and displacive lattice transformations. Physical Review B, 2016, 94, .                                                     | 1.1  | 10        |
| 28 | Slag formation path during dephosphorization process in a converter. International Journal of<br>Minerals, Metallurgy and Materials, 2015, 22, 1260-1265.              | 2.4  | 7         |
| 29 | Growth mechanisms of spinel crystals in vanadium slag under different heat treatment conditions.<br>CrystEngComm, 2015, 17, 7300-7305.                                 | 1.3  | 27        |
| 30 | Structural transformations among austenite, ferrite and cementite in Fe–C alloys: A unified theory based on ab initio simulations. Acta Materialia, 2015, 99, 281-289. | 3.8  | 59        |
| 31 | Coupled reaction kinetics of duplex steelmaking process for high phosphorus hot metal. Ironmaking and Steelmaking, 2013, 40, 282-289.                                  | 1.1  | 16        |
| 32 | Nucleation and growth kinetics of spinel crystals in vanadium slag. Ironmaking and Steelmaking, 2012,<br>39, 147-154.                                                  | 1.1  | 66        |