
Oleg Petrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820347/publications.pdf Version: 2024-02-01

OLEC PETROV

#	Article	lF	CITATIONS
1	Acid and Complexing Properties of Tetraazaporphyrins. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 449-457.	1.0	21
2	Reactivity of tetraazaporphyrins in the acid-base interactions with nitrogen bases. Russian Journal of General Chemistry, 2013, 83, 762-770.	0.8	11
3	Acid and complex-forming properties of tetrapyrazinoporphyrazines. Russian Journal of General Chemistry, 2009, 79, 2440-2444.	0.8	10
4	Proton-transfer complexes of β-substituted β,β-fused tetraazaporphyrins. Russian Journal of General Chemistry, 2013, 83, 1136-1142.	0.8	8
5	Catalytic properties of cobalt complexes with tetrapyrazino porphyrazine and phthalocyanine derivatives. Russian Journal of Physical Chemistry A, 2014, 88, 2064-2067.	0.6	8
6	Kinetic stability of substituted tetrapyrazinoporphyrazines in a system nitrogen base-dimethylsulfoxide. Russian Journal of General Chemistry, 2013, 83, 562-566.	0.8	7
7	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 135-141.	1.0	6
8	Kinetic stability of tetra(3-nitro-5-tert-butyl)phthalocyanine in the system nitrogen-containing base-DMSO. Russian Journal of General Chemistry, 2011, 81, 1211-1215.	0.8	6
9	Kinetic Features of Tetra(1,2,5-selenodiazolo)porphyrazine Destruction in Proton-Acceptor Media. Russian Journal of Physical Chemistry A, 2020, 94, 1843-1847.	0.6	6
10	The kinetics of proton transfer from octaphenylsubstituted tetraazaporphyrin to organic bases in benzene. Russian Journal of Physical Chemistry A, 2011, 85, 1578-1583.	0.6	5
11	Kinetic Regularities of Slow Proton Transfer from β-Substituted Porphyrazines to Organic Bases. Russian Journal of Physical Chemistry A, 2021, 95, 696-704.	0.6	5
12	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 175-179.	1.0	4
13	Kinetic characteristics of intermolecular proton transfer from NH groups of tetra(3-nitro-5-tert-butyl)phthalocyanine in nitrogen base-benzene systems. Russian Journal of Physical Chemistry A, 2006, 80, 1411-1416.	0.6	4
14	The kinetic peculiarities of intermolecular proton transfer from NH groups of octa(m-trifluoromethylphenyl)tetraazaporphin in the nitrogen base-benzene system. Russian Journal of Physical Chemistry A, 2010, 84, 1506-1510.	0.6	4
15	Kinetics of proton transfer from hexa(m-trifluoromethylphenyl)benzotetraazaporphine to nitrogen-containing bases in benzene. Russian Journal of Physical Chemistry A, 2012, 86, 1821-1825.	0.6	4
16	Kinetics of proton transfer from tetra(4-nitro-5-tert-butyl)phthalocyanine to nitrogen-containing bases in benzene. Russian Journal of Physical Chemistry A, 2014, 88, 7-11.	0.6	4
17	Kinetic stability of tetra(1,2,5-thiadiazolo)porphyrazine in the system nitrogen-containing base-dimethyl sulfoxide. Russian Journal of General Chemistry, 2014, 84, 1732-1736.	0.8	4
18	Kinetic Stability of Tetra(1,2,5-selenodiazolo)porphyrazine in the Nitrogen-Containing Base-Dimethyl Sulfoxide System. Russian Journal of General Chemistry, 2019, 89, 429-433.	0.8	4

Oleg Petrov

#	Article	IF	CITATIONS
19	Kinetics of the Acid-Base Interaction between Tetra(4-tert-butyl)phthalocyanine and Nitrogen-Containing Bases in Dimethyl Sulfoxide. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 894-898.	1.0	3
20	Kinetics of proton transfer from tetra(m-trifluoromethylphenyl)dibenzotetraazaporphin to nitrogen-containing bases in a benzene-dimethyl sulfoxide system. Russian Journal of Physical Chemistry A, 2015, 89, 196-201.	0.6	3
21	Aza-substitution, benzo-annulation effects and catalytic activity of β-octaphenyl-substituted tetrapyrrolic macroheterocyclic cobalt complexes. I. heterogeneous catalysis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 37-43.	1.6	3
22	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 295-299.	0.8	2
23	Kinetics of Formation of Octa(p-Bromophenyl)tetraazaporphine Complexes with N-Bases in Benzene-Dimethyl Sulfoxide System. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 809-813.	1.0	2
24	The effect of the nitrogen-containing base nature on the kinetic of zinc complex formation with octa(m-trifluoromethylphenyl)porphyrazine in benzene. Russian Journal of General Chemistry, 2016, 86, 1912-1916.	0.8	2
25	Kinetic characteristics of the destruction of β,β-annelated porphyrazines in a nitrogen-containing base–dimethylsulfoxide system. Russian Journal of Physical Chemistry A, 2017, 91, 476-481.	0.6	2
26	Kinetics of acid-base interaction of octaphenyl-substituted tetraazaporphyrins with nitrogen-containing bases in a system benzene-dimethylsulfoxide. Russian Journal of General Chemistry, 2009, 79, 839-844.	0.8	1
27	Influence of the Nature of the Nitrogen-Containing Base on the Kinetic Stability of Tetra(1,2,5-thiadiazolo)porphyrazine in Dimethyl Sulfoxide. Russian Journal of General Chemistry, 2018, 88, 2028-2033.	0.8	1
28	Kinetic Features of the Formation of Zinc Complex with Hexa(m-Trifluoromethylphenyl)benzoporphyrazine in a Nitrogen-Containing Base–Benzene System. Russian Journal of Physical Chemistry A, 2018, 92, 1664-1669.	0.6	1
29	Effect of a Nitrogen-Containing Base on the Kinetics of Formation of the Zinc–Octa(m-trifluoromethylphenyl)porphyrazine Complex in Benzene. Russian Journal of Physical Chemistry A, 2019, 93, 1049-1053.	0.6	1
30	Kinetics of Proton Transfer from Octa(m-trifluoromethylphenyl)porphyrazine to Nitrogen-Containing Bases in the Benzene–Dimethylsulfoxide System. Russian Journal of Physical Chemistry A, 2020, 94, 48-53.	0.6	1
31	Effect of the Sterical Factor on the Kinetics of Octa(4-tert-butylphenyl)tetrapyrazinoporphyrazine in a Nitrogen-Containing Base–Dimethylsulfoxide System. Russian Journal of Physical Chemistry A, 2021, 95, 1569-1573.	0.6	1
32	Reactivity of Tetrakis(4-tert-butyl-5-phenylsulfanyl)Âphthalocyanine in Acid–Base Interactions with Organic Bases. Russian Journal of Organic Chemistry, 2021, 57, 1428-1434.	0.8	1
33	Regularities of the catalytic influence of organic base on the formation of magnesium and zinc complexes of porphyrazines. Russian Chemical Bulletin, 2022, 71, 613-619.	1.5	1
34	Kinetic features of acid-base interaction of tetra(3-nitro-5-tert-butyl)phthalocyanine with nitrogen-containing bases in benzene. Russian Journal of General Chemistry, 2011, 81, 420-424.	0.8	0
35	Acid—Base Interactions and Complexation of β-Substituted Porphyrazines with Magnesium Salts in Proton-Acceptor Media. Russian Journal of General Chemistry, 2019, 89, 2251-2257.	0.8	Ο
36	Destruction of Porphyrazines in Organic Proton-Acceptor Media. Russian Journal of Physical Chemistry A, 2022, 96, 470-477.	0.6	0

#	Article	IF	CITATIONS
37	Decomposition of Octakis(4-tert-butylphenyl)tetrapyrazinoÂporphyrazine in Organic Proton-Acceptor Media. Russian Journal of Organic Chemistry, 2022, 58, 315-321.	0.8	ο