Mircea Ivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820325/publications.pdf

Version: 2024-02-01

126858 118793 8,189 65 33 62 h-index citations g-index papers 69 69 69 10955 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ubiquitination of hypoxia-inducible factor requires direct binding to the \hat{l}^2 -domain of the von Hippelâ \in "Lindau protein. Nature Cell Biology, 2000, 2, 423-427.	4.6	1,423
2	A MicroRNA Signature of Hypoxia. Molecular and Cellular Biology, 2007, 27, 1859-1867.	1.1	990
3	Structure of an HIF-1alpha -pVHL Complex: Hydroxyproline Recognition in Signaling. Science, 2002, 296, 1886-1889.	6.0	679
4	Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13459-13464.	3.3	520
5	MicroRNA Regulation of DNA Repair Gene Expression in Hypoxic Stress. Cancer Research, 2009, 69, 1221-1229.	0.4	402
6	MicroRNA-210 Regulates Mitochondrial Free Radical Response to Hypoxia and Krebs Cycle in Cancer Cells by Targeting Iron Sulfur Cluster Protein ISCU. PLoS ONE, 2010, 5, e10345.	1.1	276
7	Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell, 2015, 161, 1553-1565.	13.5	273
8	An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry, 2009, 284, 35134-35143.	1.6	248
9	The von Hippel–Lindau tumor suppressor protein. Current Opinion in Genetics and Development, 2001, 11, 27-34.	1.5	209
10	Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nature Communications, 2014, 5, 5203.	5.8	195
11	The EGLN-HIF O 2 -Sensing System: Multiple Inputs and Feedbacks. Molecular Cell, 2017, 66, 772-779.	4.5	192
12	Hypoxia response and microRNAs: no longer two separate worlds. Journal of Cellular and Molecular Medicine, 2008, 12, 1426-1431.	1.6	182
13	microRNA: Emerging therapeutic targets in acute ischemic diseases. , 2010, 125, 92-104.		166
14	Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Communications, 2014, 5, 5202.	5.8	151
15	Regulatory mechanisms of microRNAs involvement in cancer. Expert Opinion on Biological Therapy, 2007, 7, 1009-1019.	1.4	150
16	Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene, 1997, 14, 2417-2423.	2.6	144
17	Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. Molecular Cell, 2016, 61, 520-534.	4.5	142
18	Regulation of microRNA Expression: the Hypoxic Component. Cell Cycle, 2007, 6, 1425-1430.	1.3	132

#	Article	IF	Citations
19	Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 2017, 16, 551-563.	3.0	110
20	HypoxamiRs and Cancer: From Biology to Targeted Therapy. Antioxidants and Redox Signaling, 2014, 21, 1220-1238.	2.5	102
21	miR-210: Fine-Tuning the Hypoxic Response. Advances in Experimental Medicine and Biology, 2014, 772, 205-227.	0.8	101
22	Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs. Frontiers in Molecular Neuroscience, 2011, 4, 7.	1.4	98
23	Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica, 2017, 102, e427-e430.	1.7	93
24	Impact of APE1/Ref-1 Redox Inhibition on Pancreatic Tumor Growth. Molecular Cancer Therapeutics, 2011, 10, 1698-1708.	1.9	92
25	Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models. Molecular Cancer Therapeutics, 2016, 15, 2722-2732.	1.9	91
26	Regulation of microRNA expression: the hypoxic component. Cell Cycle, 2007, 6, 1426-31.	1.3	86
27	Emerging Roles of microRNAs in the Molecular Responses to Hypoxia. Current Pharmaceutical Design, 2009, 15, 3861-3866.	0.9	75
28	The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA contributes to an aggressive phenotype in lung adenocarcinoma through regulation of oxidative stress. Oncogene, 2019, 38, 7146-7165.	2.6	75
29	Dihydroceramide-based Response to Hypoxia. Journal of Biological Chemistry, 2011, 286, 38069-38078.	1.6	71
30	Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts. Journal of Molecular Medicine, 2013, 91, 749-758.	1.7	64
31	Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) Redox Function Negatively Regulates NRF2. Journal of Biological Chemistry, 2015, 290, 3057-3068.	1.6	57
32	The Many Faces of Long Noncoding RNAs in Cancer. Antioxidants and Redox Signaling, 2018, 29, 922-935.	2.5	45
33	Transcriptome analysis of hypoxic cancer cells uncovers intron retention in EIF2B5 as a mechanism to inhibit translation. PLoS Biology, 2017, 15, e2002623.	2.6	41
34	PDGF induced microRNA alterations in cancer cells. Nucleic Acids Research, 2011, 39, 4035-4047.	6.5	40
35	Knockout of Vdac1 activates hypoxia-inducible factor through reactive oxygen species generation and induces tumor growth by promoting metabolic reprogramming and inflammation. Cancer & Metabolism, 2015, 3, 8.	2.4	36
36	Mitogenic stimulation of normal and oncogene-transformed human thyroid epithelial cells by hepatocyte growth factor. Molecular and Cellular Endocrinology, 1996, 117, 247-251.	1.6	33

#	Article	IF	Citations
37	Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Experimental Eye Research, 2006, 83, 1472-1481.	1.2	29
38	Targeting the Insulin Growth Factor and the Vascular Endothelial Growth Factor Pathways in Ovarian Cancer. Molecular Cancer Therapeutics, 2012, 11, 1576-1586.	1.9	29
39	Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing. Breast Cancer Research and Treatment, 2014, 143, 57-68.	1.1	28
40	Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers. Breast Cancer Research, 2019, 21, 87.	2.2	26
41	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	4.7	26
42	P38 \hat{i} ±/JNK signaling restrains erythropoiesis by suppressing Ezh2-mediated epigenetic silencing of Bim. Nature Communications, 2018, 9, 3518.	5.8	25
43	Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. Journal of Experimental and Clinical Cancer Research, 2021, 40, 251.	3.5	23
44	AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochemical and Biophysical Research Communications, 2008, 370, 230-234.	1.0	22
45	Spontaneous de-differentiation correlates with extended lifespan in transformed thyroid epithelial cells: An epigenetic mechanism of tumour progression?., 1996, 67, 563-572.		18
46	HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism. Communications Biology, 2020, 3, 768.	2.0	18
47	The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer. Gynecologic Oncology, 2017, 147, 481-487.	0.6	17
48	Hypoxia signaling: Challenges and opportunities for cancer therapy. Seminars in Cancer Biology, 2022, 85, 185-195.	4.3	17
49	Characterization of Phosphorylation Sites on Tpl2 Using IMAC Enrichment and a Linear Ion Trap Mass Spectrometer. Journal of Proteome Research, 2007, 6, 2269-2276.	1.8	16
50	Ferroxitosis: A cell death from modulation of oxidative phosphorylation and PKM2-dependent glycolysis in melanoma. Oncotarget, 2014, 5, 12694-12703.	0.8	13
51	Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nature Communications, 2020, 11, 4755.	5.8	12
52	Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity., 2018, 59, 858.		11
53	Identification of Elongin C and Skp1 Sequences That Determine Cullin Selection. Journal of Biological Chemistry, 2004, 279, 43019-43026.	1.6	10
54	Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS Journal, 2020, 287, 941-963.	2.2	10

#	Article	IF	CITATIONS
55	Analysis of von Hippel–Lindau Hereditary Cancer Syndrome: Implications of Oxygen Sensing. Methods in Enzymology, 2004, 381, 320-335.	0.4	9
56	Gene Expression Analysis Reveals Distinct Pathways of Resistance to Bevacizumab in Xenograft Models of Human ER-Positive Breast Cancer. Journal of Cancer, 2014, 5, 633-645.	1.2	9
57	Blockade of FGF signaling: Therapeutic promise for ovarian cancer. Cancer Biology and Therapy, 2010, 10, 505-508.	1.5	7
58	"Micro―management of DNA repair genes by hypoxia. Cell Cycle, 2009, 8, 4009-4010.	1.3	5
59	Glycolysis, via NADHâ€dependent dimerisation of CtBPs, regulates hypoxiaâ€induced expression of CAIX and stemâ€like breast cancer cell survival. FEBS Letters, 2020, 594, 2988-3001.	1.3	5
60	Transcriptomic modifications in developmental cardiopulmonary adaptations to chronic hypoxia using a murine model of simulated high-altitude exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L456-L470.	1.3	4
61	Mitigation of a Newly Discovered Phenomenon, Extra Physiologic Oxygen Shock/Stress (EPHOSS), Mediated By the Mitochondria Permeability Transition Pore, Greatly Improves Stem Cell Collection and Transplantation. Blood, 2014, 124, 2905-2905.	0.6	4
62	<i>àê~microRNA' Review Series</i> àêThe ongoing microRNA revolution and its impact in biology and medicine. Journal of Cellular and Molecular Medicine, 2008, 12, 1425-1425.	1.6	1
63	Molecular responses to hypoxia: ancient pathways, clinical promises. Journal of Cellular and Molecular Medicine, 2009, 13, 2757-2758.	1.6	0
64	Reduced Chemosensitivity of FLT3/ITD Mutated Cells to Cytarabine and Quizartinib Under Hypoxic Conditions. Blood, 2016, 128, 1579-1579.	0.6	0
65	Integrative Analysis of AML Cell Response to Cytarabine Reveals Synergistic Opportunities Centered on Cholesterol Metabolism. Blood, 2018, 132, 2631-2631.	0.6	0