Mark S Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8820220/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angewandte Chemie - International Edition, 2006, 45, 1520-1543.	7.2	1,737
2	Highly Enantioselective Catalytic Acyl-Pictetâ^'Spengler Reactions. Journal of the American Chemical Society, 2004, 126, 10558-10559.	6.6	585
3	Halogen bonding in solution: thermodynamics and applications. Chemical Society Reviews, 2013, 42, 1667-1680.	18.7	501
4	Thermodynamics of Halogen Bonding in Solution: Substituent, Structural, and Solvent Effects. Journal of the American Chemical Society, 2010, 132, 1646-1653.	6.6	345
5	Highly Enantioselective Conjugate Additions to α,β-Unsaturated Ketones Catalyzed by a (Salen)Al Complex. Journal of the American Chemical Society, 2005, 127, 1313-1317.	6.6	326
6	Anion Receptors Composed of Hydrogen- and Halogen-Bond Donor Groups: Modulating Selectivity With Combinations of Distinct Noncovalent Interactions. Journal of the American Chemical Society, 2011, 133, 10559-10567.	6.6	279
7	Enantioselective Thiourea-Catalyzed Acyl-Mannich Reactions of Isoquinolines. Angewandte Chemie - International Edition, 2005, 44, 6700-6704.	7.2	265
8	Enantioselective Michael Additions to α,β-Unsaturated Imides Catalyzed by a Salenâ^'Al Complex. Journal of the American Chemical Society, 2003, 125, 11204-11205.	6.6	264
9	Chalcogen Bonding in Solution: Interactions of Benzotelluradiazoles with Anionic and Uncharged Lewis Bases. Journal of the American Chemical Society, 2015, 137, 4126-4133.	6.6	242
10	Borinic Acid-Catalyzed Regioselective Acylation of Carbohydrate Derivatives. Journal of the American Chemical Society, 2011, 133, 3724-3727.	6.6	234
11	A Tridentate Halogenâ€Bonding Receptor for Tight Binding of Halide Anions. Angewandte Chemie - International Edition, 2010, 49, 1674-1677.	7.2	230
12	Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chemical Reviews, 2018, 118, 11457-11517.	23.0	200
13	Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst. Journal of the American Chemical Society, 2011, 133, 13926-13929.	6.6	192
14	Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. Journal of the American Chemical Society, 2012, 134, 8260-8267.	6.6	191
15	Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coordination Chemistry Reviews, 2020, 413, 213270.	9.5	160
16	Organoboron Acids and Their Derivatives as Catalysts for Organic Synthesis. ACS Catalysis, 2013, 3, 945-962.	5.5	149
17	Anion recognition by a bidentate chalcogen bond donor. Chemical Communications, 2016, 52, 9881-9884.	2.2	139
18	Catalysis Based on Reversible Covalent Interactions of Organoboron Compounds. Accounts of Chemical Research, 2015, 48, 295-305.	7.6	135

#	Article	IF	CITATIONS
19	<i>N</i> , <i>N′</i> -Diarylsquaramides: General, High-Yielding Synthesis and Applications in Colorimetric Anion Sensing. Journal of Organic Chemistry, 2010, 75, 3983-3992.	1.7	126
20	Regioselective Alkylation of Carbohydrate Derivatives Catalyzed by a Diarylborinic Acid Derivative. Organic Letters, 2011, 13, 3090-3093.	2.4	116
21	Borinic Acid Catalyzed Stereo- and Regioselective Couplings of Clycosyl Methanesulfonates. Journal of the American Chemical Society, 2016, 138, 11058-11066.	6.6	112
22	Site-Selective and Stereoselective C–H Alkylations of Carbohydrates via Combined Diarylborinic Acid and Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 5149-5153.	6.6	106
23	Measurements of weak halogen bond donor abilities with tridentate anion receptors. Chemical Communications, 2010, 46, 9025.	2.2	104
24	Correlations between Computation and Experimental Thermodynamics of Halogen Bonding. Journal of Organic Chemistry, 2012, 77, 3483-3491.	1.7	90
25	Asymmetric Catalysis Special Feature Part I: Asymmetric catalysis in complex target synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5368-5373.	3.3	87
26	Boron-Catalyzed Direct Aldol Reactions of Pyruvic Acids. Organic Letters, 2009, 11, 5486-5489.	2.4	86
27	Halogen Bonding between Anions and Iodoperfluoroorganics: Solutionâ€Phase Thermodynamics and Multidentateâ€Receptor Design. Chemistry - A European Journal, 2013, 19, 2050-2058.	1.7	86
28	Organoboron-Catalyzed Regio- and Stereoselective Formation of β-2-Deoxyglycosidic Linkages. Organic Letters, 2014, 16, 3604-3607.	2.4	82
29	9-Hetero-10-boraanthracene-derived borinic acid catalysts for regioselective activation of polyols. Chemical Science, 2013, 4, 3298.	3.7	75
30	Anion Detection by a Fluorescent Poly(squaramide): Selfâ€Assembly of Anionâ€Binding Sites by Polymer Aggregation. Angewandte Chemie - International Edition, 2011, 50, 2059-2062.	7.2	73
31	Synthesis of Cardiac Glycoside Analogs by Catalyst-Controlled, Regioselective Glycosylation of Digitoxin. Organic Letters, 2013, 15, 1358-1361.	2.4	73
32	Polymers for Anion Recognition and Sensing. Macromolecular Rapid Communications, 2012, 33, 21-34.	2.0	72
33	Catalyst-Controlled Regioselective Reactions of Carbohydrate Derivatives. Synthesis, 2012, 44, 3421-3431.	1.2	63
34	Solution-Phase Self-Assembly of Complementary Halogen Bonding Polymers. Journal of the American Chemical Society, 2015, 137, 5080-5086.	6.6	56
35	Applications of organoboron compounds in carbohydrate chemistry and glycobiology: analysis, separation, protection, and activation. Carbohydrate Research, 2013, 381, 112-122.	1.1	54
36	Catalyst-Controlled, Regioselective Reactions of Carbohydrate Derivatives. Topics in Current Chemistry, 2015, 372, 125-155.	4.0	52

#	Article	IF	CITATIONS
37	Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. Organic and Biomolecular Chemistry, 2013, 11, 5409.	1.5	46
38	Site-Selective, Copper-Mediated <i>O</i> -Arylation of Carbohydrate Derivatives. Journal of the American Chemical Society, 2017, 139, 15515-15521.	6.6	44
39	Site-selective redox isomerizations of furanosides using a combined arylboronic acid/photoredox catalyst system. Chemical Science, 2020, 11, 1531-1537.	3.7	44
40	Boronic esters as protective groups in carbohydrate chemistry: processes for acylation, silylation and alkylation of glycoside-derived boronates. Organic and Biomolecular Chemistry, 2017, 15, 132-143.	1.5	43
41	Carbon–carbon bond-forming reactions of α-carbonyl carbocations: exploration of a reversed-polarity equivalent of enolate chemistry. Tetrahedron, 2011, 67, 7586-7592.	1.0	42
42	Borinic Acids: A Neglected Class of Organoboron Compounds for Recognition of Diols in Aqueous Solution. Australian Journal of Chemistry, 2011, 64, 1466.	0.5	35
43	Synthesis of benzannulated heterocycles by twofold Suzuki–Miyaura couplings of cyclic diarylborinic acids. Organic and Biomolecular Chemistry, 2014, 12, 1391.	1.5	33
44	Boronic acid/BrÃ,nsted acid co-catalyst systems for the synthesis of 2H-chromenes from phenols and α,β-unsaturated carbonyls. Organic and Biomolecular Chemistry, 2016, 14, 6703-6711.	1.5	30
45	Self-Assembly of Polymer Nanostructures through Halogen Bonding Interactions of an Iodoperfluoroarene-Functionalized Polystyrene Derivative. Macromolecules, 2017, 50, 3807-3817.	2.2	30
46	Borinic Acid Catalyzed, Regioselective Chloroacylations and Chlorosulfonylations of 2,3-Epoxy Alcohols. Organic Letters, 2015, 17, 3482-3485.	2.4	29
47	Synthesis of Ketodeoxysugars from Acylated Pyranosides Using Photoredox Catalysis and Hydrogen Atom Transfer. ACS Catalysis, 2021, 11, 11171-11179.	5.5	29
48	Sequential Functionalizations of Carbohydrates Enabled by Boronic Esters as Switchable Protective/Activating Groups. Journal of Organic Chemistry, 2017, 82, 8777-8791.	1.7	28
49	Neutral Chiral Tetrakisâ€lodoâ€Triazole Halogenâ€Bond Donor for Chiral Recognition and Enantioselective Catalysis. Chemistry - A European Journal, 2021, 27, 2315-2320.	1.7	28
50	Catalyst-controlled polycondensation of glycerol with diacyl chlorides: linear polyesters from a trifunctional monomer. Chemical Science, 2017, 8, 7106-7111.	3.7	27
51	Structure and energetics of gas phase halogen-bonding in mono-, bi-, and tri-dentate anion receptors as studied by BIRD. Physical Chemistry Chemical Physics, 2013, 15, 7638.	1.3	26
52	Borinic Acid-Catalyzed, Regioselective Ring Opening of 3,4-Epoxy Alcohols. Organic Letters, 2018, 20, 5375-5379.	2.4	25
53	Site- and Stereoselective C–H Alkylations of Carbohydrates Enabled by Cooperative Photoredox, Hydrogen Atom Transfer, and Organotin Catalysis. Organic Letters, 2021, 23, 5180-5185.	2.4	24
54	The I's have it. Nature Chemistry, 2014, 6, 1029-1031.	6.6	23

#	Article	IF	CITATIONS
55	Halogen bonding: from self-assembly to materials and biomolecules. CrystEngComm, 2013, 15, 3057.	1.3	22
56	Organoboron-Promoted Regioselective Glycosylations in the Synthesis of a Saponin-Derived Pentasaccharide from <i>Spergularia ramosa</i> . Journal of Organic Chemistry, 2015, 80, 8501-8510.	1.7	22
57	Borinic acid-catalyzed stereo- and site-selective synthesis of β-glycosylceramides. Chemical Communications, 2017, 53, 5978-5980.	2.2	21
58	Boronic Acids as Phase-Transfer Reagents for Fischer Glycosidations in Low-Polarity Solvents. Journal of Organic Chemistry, 2017, 82, 11406-11417.	1.7	21
59	Photocatalytic, site-selective oxidations of carbohydrates. Chemical Communications, 2021, 57, 12135-12138.	2.2	20
60	Reversible covalent interactions of \hat{l}^2 -aminoboronic acids with carbohydrate derivatives. Chemical Communications, 2017, 53, 1809-1812.	2.2	19
61	Mechanism of an Organoboron-Catalyzed Domino Reaction: Kinetic and Computational Studies of Borinic Acid-Catalyzed Regioselective Chloroacylation of 2,3-Epoxy Alcohols. Journal of Organic Chemistry, 2017, 82, 1085-1095.	1.7	18
62	<i>P</i> -Stereogenic β-Aminophosphines: Preparation and Applications in Enantioselective Organocatalysis. Journal of Organic Chemistry, 2017, 82, 3173-3182.	1.7	18
63	Borinic Acid/Halide Co-catalyzed Semipinacol Rearrangements of 2,3-Epoxy Alcohols. Organic Letters, 2018, 20, 5327-5331.	2.4	18
64	Borinic Acidâ€Catalyzed Regioselective Ringâ€Opening of 3,4―and 2,3â€Epoxy Alcohols with Halides. Advanced Synthesis and Catalysis, 2020, 362, 398-403.	2.1	18
65	Diarylborinic Acid-Catalyzed Regioselective Ring Openings of Epoxy Alcohols with Pyrazoles, Imidazoles, Triazoles, and Other Nitrogen Heterocycles. Organic Letters, 2021, 23, 7049-7054.	2.4	18
66	Diarylborinic Acid-Catalyzed, Site-Selective Sulfation of Carbohydrate Derivatives. Journal of Organic Chemistry, 2019, 84, 900-908.	1.7	17
67	Structure–Activity Relationships for Anion-Responsive Poly(squaramides): Support for an Analyte-Induced Noncovalent Polymer Cross-Linking Mechanism. Macromolecules, 2013, 46, 6439-6450.	2.2	15
68	Recent advances in the direct <i>O</i> -arylation of carbohydrates. Organic and Biomolecular Chemistry, 2021, 19, 514-524.	1.5	15
69	Borinic Acid Catalyzed Regioselective <i>N</i> -Alkylation of Azoles. Journal of Organic Chemistry, 2022, 87, 5385-5394.	1.7	15
70	A versatile synthesis of chiral β-aminophosphines. Organic and Biomolecular Chemistry, 2016, 14, 5665-5672.	1.5	14
71	Halogen bonding and π–π interactions in the solid-state structure of a butadiynylene-linked bis(iodoperfluoroarene). CrystEngComm, 2013, 15, 3097	1.3	13
72	Exploring the construction of multicompartmental micelles by halogen bonding of complementary macromolecules. Faraday Discussions, 2017, 203, 285-299.	1.6	12

#	Article	IF	CITATIONS
73	Dehydrative glycosidations of 2-deoxysugar derivatives catalyzed by an arylboronic ester. Carbohydrate Research, 2018, 470, 42-49.	1.1	12
74	Effects of Configuration and Substitution on C–H Bond Dissociation Enthalpies in Carbohydrate Derivatives: A Systematic Computational Study. Journal of Organic Chemistry, 2022, 87, 1421-1433.	1.7	11
75	Anion Recognition in Solution via Halogen Bonding. Topics in Current Chemistry, 2014, 359, 27-48.	4.0	10
76	Rhodium-Catalyzed Tandem Isomerization–Allylation: From Diallyl Carbonates to α-Quaternary Aldehydes. ACS Catalysis, 2019, 9, 11808-11812.	5.5	9
77	Boronic acid-promoted site-selective Fischer esterifications of sugar alcohols. Green Chemistry, 2019, 21, 5363-5367.	4.6	8
78	Site-Selective, Organoboron-Catalyzed Polymerization of Pyranosides: Access to Sugar-Derived Polyesters with Tunable Properties. Macromolecules, 2020, 53, 8192-8201.	2.2	8
79	Copper-mediated anomeric <i>O</i> -arylation with organoboron reagents. Organic and Biomolecular Chemistry, 2019, 17, 5671-5674.	1.5	6
80	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203, 347-370.	1.6	5
81	Catalyst-Controlled, Site-Selective Sulfamoylation of Carbohydrate Derivatives. Organic Letters, 2022, 24, 5249-5253.	2.4	5
82	A Nonlinear Ordinary Differential Equation for Generating Graphical Rate Equations from Concentration Versus Time Data. Topics in Catalysis, 2017, 60, 554-563.	1.3	4
83	Chiral phosphine ligand libraries based on the Bull–James three-component supramolecular assembly. Supramolecular Chemistry, 2019, 31, 190-202.	1.5	4
84	Beyond the halogen bond: general discussion. Faraday Discussions, 2017, 203, 227-244.	1.6	2
85	Solid-state chemistry and applications: general discussion. Faraday Discussions, 2017, 203, 459-483.	1.6	2