Kelly G Pennell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A geospatial and binomial logistic regression model to prioritize sampling for per―and polyfluorinated alkyl substances in public water systems. Integrated Environmental Assessment and Management, 2023, 19, 163-174.	2.9	4
2	Modeling Fate and Transport of Volatile Organic Compounds (VOCs) Inside Sewer Systems. Ground Water Monitoring and Remediation, 2021, 41, 112-121.	0.8	1
3	Direct injection analysis of per and polyfluoroalkyl substances in surface and drinking water by sample filtration and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2021, 1653, 462426.	3.7	11
4	Balancing incomplete COVID-19 evidence and local priorities: risk communication and stakeholder engagement strategies for school re-opening. Reviews on Environmental Health, 2021, 36, 27-37.	2.4	8
5	Community forum identifies opportunities to engage with Eastern Kentucky community leaders about chronic disease and environmental pollution. Applied Environmental Education and Communication, 2020, 19, 187-204.	1.1	0
6	Comparison of modeled and measured indoor air trichloroethene (TCE) concentrations at a vapor intrusion site: influence of wind, temperature, and building characteristics. Environmental Sciences: Processes and Impacts, 2020, 22, 802-811.	3.5	12
7	Appalachian Environmental Health Literacy: Building Knowledge and Skills to Protect Health. Journal of Appalachian Health, 2020, 2, 47-53.	0.2	1
8	Building science approaches for vapor intrusion studies. Reviews on Environmental Health, 2019, 34, 245-250.	2.4	6
9	Occurrence of chlorinated volatile organic compounds (VOCs) in a sanitary sewer system: Implications for assessing vapor intrusion alternative pathways. Science of the Total Environment, 2018, 616-617, 1149-1162.	8.0	16
10	Measuring vapor intrusion: from source science politics to a transdisciplinary approach. Environmental Sociology, 2017, 3, 145-154.	2.9	4
11	US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites. Environmental Sciences: Processes and Impacts, 2017, 19, 87-100.	3.5	18
12	Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments. Reviews on Environmental Health, 2017, 32, 27-33.	2.4	7
13	Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains. Environmental Sciences: Processes and Impacts, 2017, 19, 1594-1607.	3.5	14
14	Comments and Corrections to: "The Emperor's Old Clothes: An Inconvenient Truth About Currently Accepted Vapor Intrusion Assessment Methods,―and "Emperor's Old Clothes Revisited,―Two Recent Editorials by Mark Kram. Ground Water Monitoring and Remediation, 2016, 36, 84-87.	0.8	0
15	Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks. Science of the Total Environment, 2016, 556, 291-301.	8.0	13
16	A variance decomposition approach to uncertainty quantification and sensitivity analysis of the Johnson and Ettinger model. Journal of the Air and Waste Management Association, 2015, 65, 154-164.	1.9	7
17	Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion. Chemosphere, 2014, 95, 140-149.	8.2	22
18	Bridging Research and Environmental Regulatory Processes: The Role of Knowledge Brokers. Environmental Science & Technology, 2013, 47, 11985-11992.	10.0	31

Kelly G Pennell

#	Article	IF	CITATIONS
19	Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants. Environmental Toxicology and Chemistry, 2013, 32, 2190-2196.	4.3	27
20	A Review of Vapor Intrusion Models. Environmental Science & amp; Technology, 2013, 47, 2457-2470.	10.0	76
21	Modeling quantification of the influence of soil moisture on subslab vapor concentration. Environmental Sciences: Processes and Impacts, 2013, 15, 1444.	3.5	20
22	Simulating the effect of slab features on vapor intrusion of crack entry. Building and Environment, 2013, 59, 417-425.	6.9	22
23	Examination of the Influence of Environmental Factors on Contaminant Vapor Concentration Attenuation Factors Using the U.S. EPA's Vapor Intrusion Database. Environmental Science & Technology, 2013, 47, 906-913.	10.0	30
24	Examination of the U.S. EPA's vapor intrusion database based on models. Environmental Science & Technology, 2013, 47, 130107231555002.	10.0	14
25	Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environmental Toxicology and Chemistry, 2013, 32, 2182-2189.	4.3	47
26	Formaldehyde concentrations in household air of asthma patients determined using colorimetric detector tubes. Indoor Air, 2013, 23, 285-294.	4.3	20
27	Sewer Gas: An Indoor Air Source of <scp>PCE</scp> to Consider During Vapor Intrusion Investigations. Ground Water Monitoring and Remediation, 2013, 33, 119-126.	0.8	34
28	Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion. Environmental Engineering Science, 2013, 30, 628-637.	1.6	43
29	Estimation of Contaminant Subslab Concentration in Vapor Intrusion Including Lateral Source–Building Separation. Vadose Zone Journal, 2013, 12, 1-9.	2.2	26
30	A numerical investigation of vapor intrusion — The dynamic response of contaminant vapors to rainfall events. Science of the Total Environment, 2012, 437, 110-120.	8.0	38
31	Estimation of contaminant subslab concentration in vapor intrusion. Journal of Hazardous Materials, 2012, 231-232, 10-17.	12.4	46
32	Comparison of the Johnsonâ^'Ettinger Vapor Intrusion Screening Model Predictions with Full Three-Dimensional Model Results. Environmental Science & Technology, 2011, 45, 2227-2235.	10.0	54
33	Kinetics and Mechanisms of Nanosilver Oxysulfidation. Environmental Science & Technology, 2011, 45, 7345-7353.	10.0	223
34	Vapor intrusion in urban settings: effect of foundation features and source location. Procedia Environmental Sciences, 2011, 4, 245-250.	1.4	20
35	Simulation of the Vapor Intrusion Process for Nonhomogeneous Soils Using a Threeâ€Ðimensional Numerical Model. Ground Water Monitoring and Remediation, 2009, 29, 92-104.	0.8	76
36	EVALUATION OF THE EFFECTS OF COAL FLY ASH AMENDMENTS ON THE TOXICITY OF A CONTAMINATED MARINE SEDIMENT. Environmental Toxicology and Chemistry, 2009, 28, 26.	4.3	26

KELLY G PENNELL

#	Article	IF	CITATIONS
37	Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model. Journal of the Air and Waste Management Association, 2009, 59, 447-460.	1.9	73
38	Phenotypic persistence and external shielding ultraviolet radiation inactivation kinetic model. Journal of Applied Microbiology, 2008, 104, 1192-1202.	3.1	33
39	Development and Performance of a Fluence Rate Distribution Model for a Cylindrical Excimer Lamp. Environmental Science & Technology, 2008, 42, 1605-1614.	10.0	7
40	Sequential Inactivation of <i>Bacillus Subtilis</i> Spores with Ultraviolet Radiation and Iodine. Journal of Environmental Engineering, ASCE, 2008, 134, 513-520.	1.4	19