Marit J Van Gils

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819447/publications.pdf

Version: 2024-02-01

50170 11,887 129 46 citations h-index papers

g-index 164 164 164 13282 docs citations times ranked citing authors all docs

35952

97

#	Article	IF	CITATIONS
1	Evolution of Coronavirus Disease 2019 (COVID-19) Symptoms During the First 12 Months After Illness Onset. Clinical Infectious Diseases, 2022, 75, e482-e490.	2.9	51
2	A single mRNA vaccine dose in COVID-19 patients boosts neutralizing antibodies against SARS-CoV-2 and variants of concern. Cell Reports Medicine, 2022, 3, 100486.	3.3	16
3	SARSâ€CoVâ€2 infection activates dendritic cells via cytosolic receptors rather than extracellular TLRs. European Journal of Immunology, 2022, 52, 646-655.	1.6	9
4	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	3.3	6
5	Diagnostic performance of two serological assays for the detection of SARS-CoV-2 specific antibodies: surveillance after vaccination. Diagnostic Microbiology and Infectious Disease, 2022, 102, 115650.	0.8	3
6	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	1.5	13
7	Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients. Blood Advances, 2022, 6, 1537-1546.	2.5	45
8	Comparing Human Milk Antibody Response After 4 Different Vaccines for COVID-19. JAMA Pediatrics, 2022, 176, 611.	3.3	12
9	Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. Frontiers in Medical Technology, 2022, 4, 867982.	1.3	11
10	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	2.1	13
11	A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Scientific Reports, 2022, 12, 3884.	1.6	11
12	Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2022, 149, 1949-1957.	1.5	39
13	Comparing the human milk antibody response after vaccination with four COVID-19 vaccines: A prospective, longitudinal cohort study in the Netherlands. EClinicalMedicine, 2022, 47, 101393.	3.2	15
14	Atypical Antibody Dynamics During Human Coronavirus HKU1 Infections. Frontiers in Microbiology, 2022, 13, 853410.	1.5	8
15	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Reports Medicine, 2022, 3, 100635.	3.3	3
16	Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Frontiers in Immunology, 2022, 13, .	2.2	6
17	Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Medicine, 2022, 19, e1003991.	3.9	75
18	From affinity selection to kinetic selection in Germinal Centre modelling. PLoS Computational Biology, 2022, 18, e1010168.	1.5	2

#	Article	IF	CITATIONS
19	Human Milk Antibody Response After Combining Two Different COVID-19 Vaccines: Mix-and-Match. Journal of Human Lactation, 2022, 38, 401-406.	0.8	2
20	Immunoassay for quantification of antigen-specific IgG fucosylation. EBioMedicine, 2022, 81, 104109.	2.7	7
21	Decreased Passive Immunity to Respiratory Viruses through Human Milk during the COVID-19 Pandemic. Microbiology Spectrum, 2022, 10, .	1.2	11
22	Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science, 2021, 371, .	6.0	244
23	Dynamics of antibodies to SARSâ€CoVâ€2 in convalescent plasma donors. Clinical and Translational Immunology, 2021, 10, e1285.	1.7	45
24	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33
25	SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592, 277-282.	13.7	802
26	The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathogens, 2021, 17, e1009257.	2.1	23
27	Production of HIV-1 Env-Specific Antibodies Mediating Innate Immune Functions Depends on Cognate Interleukin-21- Secreting CD4 ⁺ T Cells. Journal of Virology, 2021, 95, .	1.5	4
28	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	13.5	154
29	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	2.9	200
30	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	2.9	12
31	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	4.7	107
32	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	2.9	37
33	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	6.0	309
34	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	5.1	49
35	SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology, 2021, 6, .	5.6	455
36	Antibodies Against SARS-CoV-2 in Human Milk: Milk Conversion Rates in the Netherlands. Journal of Human Lactation, 2021, 37, 469-476.	0.8	38

#	Article	IF	CITATIONS
37	Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 2021, 13, 1645.	1.7	54
38	High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Science Translational Medicine, 2021, 13, .	5.8	166
39	The Levels of SARS-CoV-2 Specific Antibodies in Human Milk Following Vaccination. Journal of Human Lactation, 2021, 37, 477-484.	0.8	40
40	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	6.6	112
41	Influenza A Virus Hemagglutinin Trimer, Head and Stem Proteins Identify and Quantify Different Hemagglutinin-Specific B Cell Subsets in Humans. Vaccines, 2021, 9, 717.	2.1	13
42	Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets. Blood, 2021, 138, 1481-1489.	0.6	66
43	Human Milk Antibodies Against SARS-CoV-2: A Longitudinal Follow-Up Study. Journal of Human Lactation, 2021, 37, 485-491.	0.8	21
44	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	2.1	18
45	Convergent HIV-1 Evolution upon Targeted Destabilization of the gp120-gp41 Interface. Journal of Virology, 2021, 95, e0053221.	1.5	0
46	Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Science Advances, 2021, 7, eabj5365.	4.7	83
47	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	6.0	228
48	Infection and transmission of SARS oVâ€2 depend on heparan sulfate proteoglycans. EMBO Journal, 2021, 40, e106765.	3.5	50
49	Saliva SARS-CoV-2 Antibody Prevalence in Children. Microbiology Spectrum, 2021, 9, e0073121.	1.2	25
50	Time since SARS-CoV-2 infection and humoral immune response following BNT162b2 mRNA vaccination. EBioMedicine, 2021, 72, 103589.	2.7	16
51	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	5.8	38
52	Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS Central Science, 2021, 7, 1863-1873.	5.3	20
53	Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. ELife, 2021, 10, .	2.8	63
54	A third SARS-CoV-2 spike vaccination improves neutralization of variants-of-concern. Npj Vaccines, 2021, 6, 146.	2.9	14

#	Article	IF	Citations
55	Editorial: Novel Concepts in Using Broadly Neutralizing Antibodies for HIV-1 Treatment and Prevention. Frontiers in Immunology, 2021, 12, 823576.	2.2	1
56	Comparison of SARS-CoV-2-Specific Antibodies in Human Milk after mRNA-Based COVID-19 Vaccination and Infection. Vaccines, 2021, 9, 1475.	2.1	13
57	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
58	An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Reports, 2020, 33, 108274.	2.9	152
59	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	6.6	185
60	Visualization of the HIV-1 Env glycan shield across scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28014-28025.	3.3	57
61	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
62	Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathogens, 2020, 16, e1008817.	2.1	105
63	Diverse HIV-1 escape pathways from broadly neutralizing antibody PGDM1400 in humanized mice. MAbs, 2020, 12, 1845908.	2.6	2
64	Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Review of Vaccines, 2020, 19, 563-577.	2.0	11
65	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	6.0	1,104
66	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	4.7	18
67	The identification and function of a Netrin-1 mutation in a pedigree with premature atherosclerosis. Atherosclerosis, 2020, 301, 84-92.	0.4	11
68	Ephrin-Eph signaling usage by a variety of viruses. Pharmacological Research, 2020, 159, 105038.	3.1	23
69	Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell, 2020, 180, 471-489.e22.	13.5	106
70	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	1.6	46
71	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	1.5	57
72	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates., 2020, 16, e1008753.		0

#	Article	IF	CITATIONS
73	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e 1008753 .		O
74	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e 1008753 .		0
75	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
76	The potential of engineered antibodies for HIV-1 therapy and cure. Current Opinion in Virology, 2019, 38, 70-80.	2.6	34
77	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	1.5	12
78	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	2.1	61
79	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
80	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
81	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	5.1	42
82	Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users. Viruses, 2019, 11, 384.	1.5	6
83	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	1.5	66
84	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	1.6	40
85	HIV-1 immunogens and strategies to drive antibody responses towards neutralization breadth. Retrovirology, 2018, 15, 74.	0.9	26
86	Short Communication: Protective Efficacy of Broadly Neutralizing Antibody PGDM1400 Against HIV-1 Challenge in Humanized Mice. AIDS Research and Human Retroviruses, 2018, 34, 790-793.	0.5	7
87	Hitting HIV's Harpoon. Immunity, 2018, 49, 14-15.	6.6	4
88	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	2.1	111
89	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	5.8	128
90	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171

#	Article	IF	Citations
91	Opposites attract in bispecific antibody engineering. Journal of Biological Chemistry, 2017, 292, 14718-14719.	1.6	2
92	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	5.9	144
93	Natural infection as a blueprint for rational HIV vaccine design. Human Vaccines and Immunotherapeutics, 2017, 13, 229-236.	1.4	3
94	The Neutralizing Antibody Response in an Individual with Triple HIV-1 Infection Remains Directed at the First Infecting Subtype. AIDS Research and Human Retroviruses, 2016, 32, 1135-1142.	0.5	11
95	Probability of N332 glycan occupancy on HIV-1 gp120 modulates sensitivity to broadly neutralizing antibodies. Aids, 2016, 30, 2179-2184.	1.0	3
96	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	2.9	216
97	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Reports, 2016, 17, 2195-2209.	2.9	150
98	HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds. Retrovirology, 2016, 13, 48.	0.9	20
99	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	2.1	138
100	Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathogens, 2015, 11, e1005110.	2.1	78
101	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
102	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	13.5	239
103	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	1.5	148
104	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	3.3	324
105	A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8.	0.5	3
106	Early development of broadly reactive HIV-1 neutralizing activity in elite neutralizers. Aids, 2014, 28, 1237-1240.	1.0	19
107	Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	6.6	342
108	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	6.6	323

#	Article	IF	CITATIONS
109	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	13.7	400
110	In vivo protection by broadly neutralizing HIV antibodies. Trends in Microbiology, 2014, 22, 550-551.	3.5	43
111	HIV-1 envelope glycoprotein signatures that correlate with the development of cross-reactive neutralizing activity. Retrovirology, 2013, 10, 102.	0.9	39
112	Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology, 2013, 435, 46-56.	1.1	104
113	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	2.1	835
114	HIV-1 Envelope Glycoprotein Resistance to Monoclonal Antibody 2G12 Is Subject-Specific and Context-Dependent in Macaques and Humans. PLoS ONE, 2013, 8, e75277.	1.1	7
115	Genome-Wide Association Study on the Development of Cross-Reactive Neutralizing Antibodies in HIV-1 Infected Individuals. PLoS ONE, 2013, 8, e54684.	1.1	20
116	Longitudinal Analysis of Early HIV-1-Specific Neutralizing Activity in an Elite Neutralizer and in Five Patients Who Developed Cross-Reactive Neutralizing Activity. Journal of Virology, 2012, 86, 2045-2055.	1.5	58
117	HIV-1 envelope characteristics that coincide with the development of cross-reactive neutralizing activity in HIV-1 infected patients. Retrovirology, $2011, 8, .$	0.9	0
118	Longer V1V2 Region with Increased Number of Potential N-Linked Glycosylation Sites in the HIV-1 Envelope Glycoprotein Protects against HIV-Specific Neutralizing Antibodies. Journal of Virology, 2011, 85, 6986-6995.	1.5	86
119	Evolution of Human Immunodeficiency Virus Type 1 in a Patient with Cross-Reactive Neutralizing Activity in Serum. Journal of Virology, 2011, 85, 8443-8448.	1.5	8
120	Correlations Between HIV-1 Clades and HIV-1 Antibody Neutralization Sensitivity: Significant for Vaccine Development?. Current HIV Research, 2010, 8, 579-586.	0.2	4
121	Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection. Virology, 2010, 405, 492-504.	1.1	20
122	High prevalence of neutralizing activity against multiple unrelated human immunodeficiency virus type 1 (HIV-1) subtype B variants in sera from HIV-1 subtype B-infected individuals: evidence for subtype-specific rather than strain-specific neutralizing activity. Journal of General Virology, 2010, 91, 250-258.	1.3	16
123	Rapid Escape from Preserved Cross-Reactive Neutralizing Humoral Immunity without Loss of Viral Fitness in HIV-1-Infected Progressors and Long-Term Nonprogressors. Journal of Virology, 2010, 84, 3576-3585.	1.5	64
124	Emergence of monoclonal antibody b12-resistant human immunodeficiency virus type 1 variants during natural infection in the absence of humoral or cellular immune pressure. Journal of General Virology, 2010, 91, 1354-1364.	1.3	8
125	Crossâ€Reactive Neutralizing Humoral Immunity Does Not Protect from HIV Type 1 Disease Progression. Journal of Infectious Diseases, 2010, 201, 1045-1053.	1.9	156
126	Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. Aids, 2009, 23, 2405-2414.	1.0	112

#	Article	IF	CITATIONS
127	Changing sensitivity to broadly neutralizing antibodies $b12$, $2G12$, $2F5$, and $4E10$ of primary subtype B human immunodeficiency virus type 1 variants in the natural course of infection. Virology, 2009, 390, 348-355.	1.1	22
128	Precision-Cut Liver Slices as a New Model to Study Toxicity-Induced Hepatic Stellate Cell Activation in a Physiologic Milieu. Toxicological Sciences, 2005, 85, 632-638.	1.4	85
129	Maternal Stress and Human Milk Antibodies During the COVID-19 Pandemic. Frontiers in Nutrition, 0, 9,	1.6	3