David Pulido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819082/publications.pdf

Version: 2024-02-01

		304743	361022
35	3,811	22	35
papers	citations	h-index	g-index
39	39	39	8217
39	39	39	0217
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Streptococcus pneumoniae colonization associates with impaired adaptive immune responses against SARS-CoV-2. Journal of Clinical Investigation, 2022, 132, .	8.2	33
2	Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nature Communications, 2022, 13, 933.	12.8	23
3	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	6.1	23
4	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	11.3	118
5	Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies. Cell Reports Medicine, 2021, 2, 100326.	6.5	8
6	Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med, 2021, 2, 701-719.e19.	4.4	73
7	Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 2021, 6, e0064721.	2.9	40
8	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	13.7	2,080
9	Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. Npj Vaccines, 2020, 5, 69.	6.0	121
10	Editorial: Role of Ribonucleases in Immune Response Regulation During Infection and Cancer. Frontiers in Immunology, 2020, 11, 236.	4.8	6
11	Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Frontiers in Immunology, 2019, 10, 1500.	4.8	20
12	Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. International Journal of Molecular Sciences, 2019, 20, 4558.	4.1	10
13	Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell, 2019, 178, 216-228.e21.	28.9	107
14	Structural Basis for the Acceleration of Procollagen Processing by Procollagen C-Proteinase Enhancer-1. Structure, 2018, 26, 1384-1392.e3.	3.3	30
15	Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. European Journal of Medicinal Chemistry, 2018, 152, 590-599.	5.5	21
16	Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111. Structure, 2017, 25, 530-535.	3.3	30
17	Structural similarities in the CPC clip motif explain peptide-binding promiscuity between glycosaminoglycans and lipopolysaccharides. Journal of the Royal Society Interface, 2017, 14, 20170423.	3.4	4
18	Crystallographic analysis of the laminin \hat{l}^22 short arm reveals how the LF domain is inserted into a regular array of LE domains. Matrix Biology, 2017, 57-58, 204-212.	3.6	8

#	Article	IF	Citations
19	Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Frontiers in Immunology, 2017, 8, 1499.	4.8	77
20	Insights into the Antimicrobial Mechanism of Action of Human RNase6: Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation. International Journal of Molecular Sciences, 2016, 17, 552.	4.1	51
21	A Novel RNase 3/ECP Peptide for Pseudomonas aeruginosa Biofilm Eradication That Combines Antimicrobial, Lipopolysaccharide Binding, and Cell-Agglutinating Activities. Antimicrobial Agents and Chemotherapy, 2016, 60, 6313-6325.	3.2	56
22	Structural basis for endotoxin neutralization by the eosinophil cationic protein. FEBS Journal, 2016, 283, 4176-4191.	4.7	22
23	The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement. Biochemical Journal, 2016, 473, 1523-1536.	3.7	44
24	Protein postâ€translational modification in host defense: the antimicrobial mechanism of action of human eosinophil cationic protein native forms. FEBS Journal, 2014, 281, 5432-5446.	4.7	19
25	Towards the rational design of antimicrobial proteins. FEBS Journal, 2013, 280, 5841-5852.	4.7	29
26	Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochemical Journal, 2013, 456, 99-108.	3.7	56
27	Two Human Host Defense Ribonucleases against Mycobacteria, the Eosinophil Cationic Protein (RNase) Tj ETQq1	1 _{3.2} 78431	4.ggBT /Ove
28	Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation. PLoS Pathogens, 2012, 8, e1003005.	4.7	108
29	Antimicrobial Action and Cell Agglutination by the Eosinophil Cationic Protein Are Modulated by the Cell Wall Lipopolysaccharide Structure. Antimicrobial Agents and Chemotherapy, 2012, 56, 2378-2385.	3.2	78
30	Structural determinants of the eosinophil cationic protein antimicrobial activity. Biological Chemistry, 2012, 393, 801-815.	2.5	59
31	Antimicrobial Peptide Action on Parasites. Current Drug Targets, 2012, 13, 1138-1147.	2.1	97
32	AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics, 2012, 28, 130-131.	4.1	140
33	The sulfate-binding site structure of the human eosinophil cationic protein as revealed by a new crystal form. Journal of Structural Biology, 2012, 179, 1-9.	2.8	10
34	Lipopolysaccharide Neutralization by Antimicrobial Peptides: A Gambit in the Innate Host Defense Strategy. Journal of Innate Immunity, 2012, 4, 327-336.	3.8	70
35	Refining the Eosinophil Cationic Protein Antibacterial Pharmacophore by Rational Structure Minimization. Journal of Medicinal Chemistry, 2011, 54, 5237-5244.	6.4	31