Wolf Huetteroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8819059/publications.pdf

Version: 2024-02-01

33 papers 2,486 citations

331670 21 h-index 477307 29 g-index

40 all docs

40 docs citations

40 times ranked

1873 citing authors

#	Article	IF	Citations
1	Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 2012, 492, 433-437.	27.8	495
2	Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila. Neuron, 2015, 86, 417-427.	8.1	297
3	Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila. Current Biology, 2015, 25, 751-758.	3.9	200
4	Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience, 2014, 17, 1536-1542.	14.8	189
5	Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body. Neuron, 2016, 90, 1086-1099.	8.1	171
6	Odor Discrimination in Drosophila: From Neural Population Codes to Behavior. Neuron, 2013, 79, 932-944.	8.1	118
7	A Pair of Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom Body. Current Biology, 2011, 21, 855-861.	3.9	116
8	Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila. Neuron, 2013, 79, 945-956.	8.1	104
9	Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in <i>Manduca sexta</i> . Journal of Comparative Neurology, 2009, 517, 210-225.	1.6	92
10	Standard three-dimensional glomeruli of the Manduca sexta antennal lobe: a tool to study both developmental and adult neuronal plasticity. Cell and Tissue Research, 2005, 319, 513-524.	2.9	70
11	3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Frontiers in Systems Neuroscience, 2010, 4, 3.	2.5	68
12	Shocking Revelations and Saccharin Sweetness in the Study of Drosophila Olfactory Memory. Current Biology, 2013, 23, R752-R763.	3.9	62
13	Cockchafer Larvae Smell Host Root Scents in Soil. PLoS ONE, 2012, 7, e45827.	2.5	60
14	Neuropeptides in modulation of Drosophila behavior: how to get a grip on their pleiotropic actions. Current Opinion in Insect Science, 2019, 36, 1-8.	4.4	49
15	Peptidomics-Based Phylogeny and Biogeography of Mantophasmatodea (Hexapoda). Systematic Biology, 2012, 61, 609-629.	5.6	41
16	Masâ€allatotropin in the developing antennal lobe of the sphinx moth ⟨i⟩Manduca sexta⟨i⟩: Distribution, time course, developmental regulation, and colocalization with other neuropeptides. Developmental Neurobiology, 2008, 68, 123-142.	3.0	39
17	Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila. ELife, 2019, 8, .	6.0	36
18	Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Frontiers in Cellular Neuroscience, 2014, 8, 324.	3.7	35

#	Article	IF	CITATIONS
19	Brain organization in Collembola (springtails). Arthropod Structure and Development, 2011, 40, 304-316.	1.4	33
20	The insect central complex as model for heterochronic brain developmentâ€"background, concepts, and tools. Development Genes and Evolution, 2016, 226, 209-219.	0.9	30
21	Direct peptide profiling of lateral cell groups of the antennal lobes of Manduca sextareveals specific composition and changes in neuropeptide expression during development. Developmental Neurobiology, 2007, 67, 764-777.	3.0	25
22	3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Frontiers in Systems Neuroscience, 2010, 4, 7.	2.5	24
23	Differential Role for a Defined Lateral Horn Neuron Subset in NaÃ-ve Odor Valence in Drosophila. Scientific Reports, 2020, 10, 6147.	3.3	21
24	Conservation of the function counts: homologous neurons express sequenceâ€related neuropeptides that originate from different genes. Journal of Neurochemistry, 2009, 111, 757-765.	3.9	19
25	A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons. Journal of Neuroscience Methods, 2009, 180, 208-223.	2.5	16
26	Copper/zinc superoxide dismutase-like immunoreactivity in the metamorphosing brain of the sphinx mothManduca sexta. Journal of Comparative Neurology, 2004, 469, 141-152.	1.6	15
27	Novel antennal lobe substructures revealed in the small hive beetle Aethina tumida. Cell and Tissue Research, 2016, 363, 679-692.	2.9	11
28	The prandial process in flies. Current Opinion in Insect Science, 2019, 36, 157-166.	4.4	11
29	Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila. Current Biology, 2022, 32, 1131-1149.e7.	3.9	11
30	The Panopticonâ€"Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference. Frontiers in Behavioral Neuroscience, 2021, 15, 640146.	2.0	1
31	Hungry Flies Tune to Vinegar. Cell, 2011, 145, 17-18.	28.9	0
32	Bringing fly brains in line. Nature Methods, 2011, 8, 461-463.	19.0	0
33	Editorial overview: Neurogenetics of insect behavior: ethology touching base with the scaffold of life. Current Opinion in Insect Science, 2019, 36, iii-iv.	4.4	0