Martin Gazvoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8818612/publications.pdf

Version: 2024-02-01

623734 580821 27 652 14 25 citations g-index h-index papers 33 33 33 957 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation. Nature Communications, 2018, 9, 4814.	12.8	103
2	Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chemical Science, 2016, 7, 5148-5159.	7.4	71
3	Exploring the Scope of Pyridyl- and Picolyl-Functionalized 1,2,3-Triazol-5-ylidenes in Bidentate Coordination to Ruthenium(II) Cymene Chloride Complexes. Organometallics, 2014, 33, 2588-2598.	2.3	68
4	A mesoionic bis(Py-tzNHC) palladium(<scp>ii</scp>) complex catalyses "green―Sonogashira reaction through an unprecedented mechanism. Chemical Communications, 2016, 52, 1571-1574.	4.1	59
5	The "Fully Catalytic System―in Mitsunobu Reaction Has Not Been Realized Yet. Organic Letters, 2016, 18, 4036-4039.	4.6	51
6	In Situ Formation of Vilsmeier Reagents Mediated by Oxalyl Chloride: a Tool for the Selective Synthesis of <i>N</i> à€Sulfonylformamidines. European Journal of Organic Chemistry, 2013, 2013, 5381-5386.	2.4	30
7	Anti-mycobacterial activity of 1,3-diaryltriazenes. European Journal of Medicinal Chemistry, 2014, 77, 193-203.	5.5	25
8	A Way to Avoid Using Precious Metals: The Application of High-Surface Activated Carbon for the Synthesis of Isoindoles via the Diels–Alder Reaction of 2 <i>H</i> -Pyran-2-ones. Journal of Organic Chemistry, 2012, 77, 2857-2864.	3.2	22
9	Designing Homogeneous Copper-Free Sonogashira Reaction through a Prism of Pd–Pd Transmetalation. Organic Letters, 2020, 22, 4938-4943.	4.6	22
10	Copper-Catalyzed Azide–Alkyne Cycloaddition of Hydrazoic Acid Formed <i>In Situ</i> from Sodium Azide Affords 4-Monosubstituted-1,2,3-Triazoles. Journal of Organic Chemistry, 2022, 87, 4018-4028.	3.2	20
11	Design, synthesis and antitubercular potency of 4-hydroxyquinolin-2(1H)-ones. European Journal of Medicinal Chemistry, 2017, 138, 491-500.	5.5	19
12	N-Substituted 2-Isonicotinoylhydrazinecarboxamides — New Antimycobacterial Active Molecules. Molecules, 2014, 19, 3851-3868.	3.8	17
13	Pyridine Wingtip in [Pd(Py- <i>tz</i> NHC) ₂] ²⁺ Complex Is a Proton Shuttle in the Catalytic Hydroamination of Alkynes. Organic Letters, 2020, 22, 2157-2161.	4.6	17
14	Synthesis of 1,4-Benzodiazepine-2,5-diones by Base Promoted Ring Expansion of 3-Aminoquinoline-2,4-diones. Journal of Organic Chemistry, 2017, 82, 715-722.	3.2	14
15	Diaryltriazenes as antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA) and Mycobacterium smegmatis. European Journal of Medicinal Chemistry, 2017, 127, 223-234.	5.5	13
16	Systematic Evaluation of 2-Arylazocarboxylates and 2-Arylazocarboxamides as Mitsunobu Reagents. Journal of Organic Chemistry, 2018, 83, 4712-4729.	3.2	13
17	Combining [Arene–Ru] with Azocarboxamide to Generate a Complex with Cytotoxic Properties. Chemistry - A European Journal, 2014, 20, 17296-17299.	3.3	12
18	Database Independent Automated Structure Elucidation of Organic Molecules Based on IR, $\sup 1, \sup 13, and MS Data. Journal of Chemical Information and Modeling, 2021, 61, 756-763.$	5.4	12

#	Article	IF	Citations
19	2,3-Diarylpropenoic acids as selective non-steroidal inhibitors of type-5 17β-hydroxysteroid dehydrogenase (AKR1C3). European Journal of Medicinal Chemistry, 2013, 62, 89-97.	5.5	10
20	Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. Journal of the American Chemical Society, 2022, 144, 7852-7860.	13.7	10
21	En Route to 2-(Cyclobuten-1-yl)-3-(trifluoromethyl)-1H-indole. Journal of Organic Chemistry, 2018, 83, 2486-2493.	3.2	9
22	Completely Stereocontrolled Aldol Reaction of Chiral β-Amino Acids. Organic Letters, 2015, 17, 512-515.	4.6	8
23	Versatile Coordination of Azocarboxamides: Redoxâ€Triggered Change of the Chelating Binding Pocket in Ruthenium Complexes. Chemistry - A European Journal, 2018, 24, 18020-18031.	3.3	8
24	1 Hâ^' 15 N HMBC NMR as a tool for rapid identification of isomeric azaindoles: The case of 5Fâ€MDMBâ€P7AICA. Drug Testing and Analysis, 2019, 11, 617-625.	2.6	7
25	Fischer indolisation of $\langle i \rangle N \langle i \rangle - (\hat{l} \pm - ketoacyl)$ anthranilic acids into 2-(indol-2-carboxamido) benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study. Organic and Biomolecular Chemistry, 2014, 12, 9650-9664.	2.8	4
26	Synthesis of Bis(1,2,3-Triazole) Functionalized Quinoline-2,4-Diones. Molecules, 2018, 23, 2310.	3.8	4
27	Synthesis and X-ray Structural Analysis of the Ruthenium(III) Complex Na[trans-RuCl4(DMSO) (PyrDiaz)], the Diazene Derivative of Antitumor NAMI-Pyr. Acta Chimica Slovenica, 2017, 64, 763-770.	0.6	2