Yu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8818449/publications.pdf Version: 2024-02-01

Version. 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chemical Engineering, 2021, 2, 174-186.	6.3	193
2	Capture of Toxic Gases by Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 5410-5430.	6.7	122
3	Water absorption by deep eutectic solvents. Physical Chemistry Chemical Physics, 2019, 21, 2601-2610.	2.8	109
4	Surface Tension of 50 Deep Eutectic Solvents: Effect of Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Other Solvents, and Temperature. Industrial & Engineering Chemistry Research, 2019, 58, 12741-12750.	3.7	107
5	Significant Improvement in Dissolving Lithium-Ion Battery Cathodes Using Novel Deep Eutectic Solvents at Low Temperature. ACS Sustainable Chemistry and Engineering, 2021, 9, 12940-12948.	6.7	45
6	Volatility of Deep Eutectic Solvent Choline Chloride: <i>N</i> -Methylacetamide at Ambient Temperature and Pressure. Industrial & Engineering Chemistry Research, 2019, 58, 7308-7317.	3.7	42
7	The dynamic evaporation process of the deep eutectic solvent LiTf ₂ N: <i>N</i> -methylacetamide at ambient temperature. Physical Chemistry Chemical Physics, 2019, 21, 11810-11821.	2.8	29
8	Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts. Renewable Energy, 2020, 147, 594-601.	8.9	29
9	Visible-light-driven photoreduction of CO ₂ to CO over porous nitrogen-deficient carbon nitride nanotubes. Catalysis Science and Technology, 2019, 9, 2485-2492.	4.1	26
10	Efficient iodine capture by biocompatible PEG-based deep eutectic solvents: Kinetics and dynamic mechanism. Journal of Molecular Liquids, 2019, 289, 111166.	4.9	25
11	Surface tension and surface thermodynamic properties of PEG-based deep eutectic solvents. Journal of Molecular Liquids, 2020, 318, 114042.	4.9	24
12	Mild and efficient recovery of lithium-ion battery cathode material by deep eutectic solvents with natural and cheap components. Green Chemical Engineering, 2023, 4, 303-311.	6.3	20
13	High volatility of superbase-derived eutectic solvents used for CO ₂ capture. Physical Chemistry Chemical Physics, 2021, 23, 2193-2210.	2.8	19
14	Photoelectrocatalytic properties and mechanism of rhodamine B degradation using a graphene oxide/Ag ₃ PO ₄ /Ni film electrode. New Journal of Chemistry, 2020, 44, 9502-9508.	2.8	18
15	Vaporization enthalpy, long-term evaporation and evaporation mechanism of polyethylene glycol-based deep eutectic solvents. New Journal of Chemistry, 2020, 44, 9493-9501.	2.8	18
16	Cheap and biodegradable amino acid-based deep eutectic solvents for radioactive iodine capture via halogen bonds. Journal of Molecular Liquids, 2020, 303, 112615.	4.9	18
17	Small organic molecules with tailored structures: initiators in the transition-metal-free C–H arylation of unactivated arenes. RSC Advances, 2020, 10, 14500-14509.	3.6	9
18	Tuning refractive index of deep eutectic solvents. Journal of Molecular Liquids, 2022, 348, 118031.	4.9	9

Yu Chen

#	Article	IF	CITATIONS
19	Room-temperature conversion of CO ₂ into quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-dione using deep eutectic solvents at atmospheric pressure with high efficiency. Reaction Chemistry and Engineering, 2022, 7, 1968-1977.	3.7	6
20	Factors affecting the refractive index of amino acid-based deep eutectic solvents. Chemical Thermodynamics and Thermal Analysis, 2021, 3-4, 100016.	1.5	5
21	Time-dependent air quality and pollutant concentration in the Jingjinji region: future gas capture by green solvents. New Journal of Chemistry, 2021, 45, 15555-15561.	2.8	0
22	Room-temperature dissolution of PbI ₂ by a PEGylated deep eutectic solvent with high efficiency. New Journal of Chemistry, 0, , .	2.8	0