Joachim Pius Spatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8818060/publications.pdf Version: 2024-02-01

IOACHIM PILLS SPATZ

#	Article	IF	CITATIONS
1	Next Generation Cell Culture Tools Featuring Micro―and Nanotopographies for Biological Screening. Advanced Functional Materials, 2022, 32, 2100881.	7.8	14
2	Next Generation Cell Culture Tools Featuring Micro―and Nanotopographies for Biological Screening (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	7.8	1
3	Structural insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. Nature Communications, 2022, 13, 222.	5.8	23
4	Facile and Versatile Method for Micropatterning Poly(acrylamide) Hydrogels Using Photocleavable Comonomers. ACS Applied Materials & Interfaces, 2022, 14, 3643-3652.	4.0	10
5	4D Printing of Shape Memory Polymers: From Macro to Micro. Advanced Functional Materials, 2022, 32, .	7.8	73
6	Integrin α _{IIb} β ₃ Activation and Clustering in Minimal Synthetic Cells. Advanced NanoBiomed Research, 2022, 2, .	1.7	3
7	Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nature Communications, 2022, 13, 868.	5.8	20
8	Vesicle Induced Receptor Sequestration: Mechanisms behind Extracellular Vesicleâ€Based Protein Signaling. Advanced Science, 2022, 9, e2200201.	5.6	19
9	Together is Better: mRNA Coâ€Encapsulation in Lipoplexes is Required to Obtain Ratiometric Coâ€Delivery and Protein Expression on the Single Cell Level. Advanced Science, 2022, 9, e2102072.	5.6	13
10	pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells. ACS Synthetic Biology, 2022, 11, 366-382.	1.9	6
11	Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials, 2022, 285, 121522.	5.7	10
12	Temperature-sensitive migration dynamics in neutrophil-differentiated HL-60 cells. Scientific Reports, 2022, 12, 7053.	1.6	3
13	Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials, 2022, 287, 121646.	5.7	2
14	Can Bottom-Up Synthetic Biology Generate Advanced Drug-Delivery Systems?. Trends in Biotechnology, 2021, 39, 445-459.	4.9	52
15	Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials, 2021, 268, 120543.	5.7	48
16	Autonomous Directional Motion of Actinâ€Containing Cellâ€5ized Droplets. Advanced Intelligent Systems, 2021, 3, 2000190.	3.3	8
17	Division and Regrowth of Phaseâ€5eparated Giant Unilamellar Vesicles**. Angewandte Chemie, 2021, 133, 10756-10764.	1.6	10
18	Surface Co-presentation of BMP-2 and integrin selective ligands at the nanoscale favors α5β1 integrin-mediated adhesion. Biomaterials, 2021, 267, 120484.	5.7	15

#	Article	IF	CITATIONS
19	Ultra-transparent slippery surface. Smart Materials in Medicine, 2021, 2, 38-45.	3.7	10
20	Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery. Biomaterials, 2021, 264, 120203.	5.7	45
21	Precision Surface Microtopography Regulates Cell Fate via Changes to Actomyosin Contractility and Nuclear Architecture. Advanced Science, 2021, 8, 2003186.	5.6	41
22	Optically transparent vertical silicon nanowire arrays for live-cell imaging. Journal of Nanobiotechnology, 2021, 19, 51.	4.2	15
23	Division and Regrowth of Phaseâ€Separated Giant Unilamellar Vesicles**. Angewandte Chemie - International Edition, 2021, 60, 10661-10669.	7.2	66
24	Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells. Nature Communications, 2021, 12, 3967.	5.8	32
25	Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Science Advances, 2021, 7, eabg6666.	4.7	42
26	Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. ELife, 2021, 10, .	2.8	11
27	Reply to Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano, 2021, 15, 15409-15417.	7.3	Ο
28	Building a community to engineer synthetic cells and organelles from the bottom-up. ELife, 2021, 10, .	2.8	27
29	Integrin Subtypes and Nanoscale Ligand Presentation Influence Drug Sensitivity in Cancer Cells. Nano Letters, 2020, 20, 1183-1191.	4.5	31
30	Forces during cellular uptake of viruses and nanoparticles at the ventral side. Nature Communications, 2020, 11, 32.	5.8	35
31	Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Annals of Biomedical Engineering, 2020, 48, 893-902.	1.3	72
32	CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials, 2020, 259, 120313.	5.7	43
33	Engineering Lightâ€Responsive Contractile Actomyosin Networks with DNA Nanotechnology. Advanced Biology, 2020, 4, 2000102.	3.0	17
34	Soft Hydrogels for Balancing Cell Proliferation and Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4687-4701.	2.6	37
35	Mechanobiology of leader–follower dynamics in epithelial cell migration. Current Opinion in Cell Biology, 2020, 66, 97-103.	2.6	17
36	Dropletâ€Based Combinatorial Assay for Cell Cytotoxicity and Cytokine Release Evaluation. Advanced Functional Materials, 2020, 30, 2003479.	7.8	12

#	Article	IF	CITATIONS
37	Droplet-Based Cytotoxicity Assay: Implementation of Time-Efficient Screening of Antitumor Activity of Natural Killer Cells. ACS Omega, 2020, 5, 24674-24683.	1.6	14
38	Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370, 725-730.	6.0	348
39	Dynamic heterogeneity influences the leader–follower dynamics during epithelial wound closure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190391.	1.8	22
40	DNAâ€Based Assembly of Multi ompartment Polymersome Networks. Advanced Functional Materials, 2020, 30, 2003480.	7.8	18
41	Substrate Resistance to Traction Forces Controls Fibroblast Polarization. Biophysical Journal, 2020, 119, 2558-2572.	0.2	10
42	Labelâ€free monitoring and manipulation of microfluidic waterâ€inâ€oil droplets. View, 2020, 1, 20200101.	2.7	12
43	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	11.1	50
44	BMPâ€⊋ Signaling and Mechanotransduction Synergize to Drive Osteogenic Differentiation via YAP/TAZ. Advanced Science, 2020, 7, 1902931.	5.6	66
45	Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity <i>In Vitro</i> . ACS Nano, 2020, 14, 6866-6877.	7.3	10
46	Impaired integrin α ₅ /β ₁ â€mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell, 2020, 19, e13131.	3.0	25
47	Electrocoalescence of Water-in-Oil Droplets with a Continuous Aqueous Phase: Implementation of Controlled Content Release. ACS Omega, 2020, 5, 7529-7536.	1.6	7
48	Polymerâ€Based Porous Microcapsules as Bacterial Traps. Advanced Functional Materials, 2020, 30, 1908855.	7.8	12
49	A function of profilin in force generation during malaria parasite motility independent of actin binding. Journal of Cell Science, 2020, 134, .	1.2	11
50	Biomimetic Optical Nanostructures. PhotonicsViews, 2020, 17, 40-43.	0.1	0
51	Bottomâ€Up Assembly of Functional Intracellular Synthetic Organelles by Dropletâ€Based Microfluidics. Small, 2020, 16, e1906424.	5.2	42
52	Dynamic Actuation of DNA-Assembled Plasmonic Nanostructures in Microfluidic Cell-Sized Compartments. Nano Letters, 2020, 20, 1571-1577.	4.5	26
53	An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. Nature Communications, 2020, 11, 472.	5.8	31
54	Black and white fused silica: modified sol-gel process combined with moth-eye structuring for highly absorbing and diffuse reflecting SiO ₂ glass. Optics Express, 2020, 28, 32499.	1.7	3

#	Article	IF	CITATIONS
55	Membrane-Mimetic Dendrimersomes Engulf Living Bacteria via Endocytosis. Nano Letters, 2019, 19, 5732-5738.	4.5	38
56	Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Applied Materials & Interfaces, 2019, 11, 45520-45530.	4.0	57
57	Cell Type-Dependent Integrin Distribution in Adhesion and Migration Responses on Protein-Coated Microgrooved Substrates. ACS Omega, 2019, 4, 1791-1800.	1.6	22
58	One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells. ACS Synthetic Biology, 2019, 8, 937-947.	1.9	114
59	Surface Immobilized E adherin Mimetic Peptide Regulates the Adhesion and Clustering of Epithelial Cells. Advanced Healthcare Materials, 2019, 8, e1801384.	3.9	16
60	Programmable Functionalization of Surfactantâ€Stabilized Microfluidic Droplets via DNAâ€Tags. Advanced Functional Materials, 2019, 29, 1808647.	7.8	34
61	Adhesion Stabilized <i>en Masse</i> Intracellular Electrical Recordings from Multicellular Assemblies. Nano Letters, 2019, 19, 3244-3255.	4.5	32
62	Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells. ACS Nano, 2019, 13, 1403-1411.	7.3	81
63	Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition. Nano Letters, 2019, 19, 2280-2290.	4.5	90
64	Morphological Plasticity of Human Melanoma Cells Is Determined by Nanoscopic Patterns of E- and N-Cadherin Interactions. Journal of Investigative Dermatology, 2019, 139, 562-572.	0.3	9
65	Differential Modulation of Platelet Adhesion and Spreading by Adhesive Ligand Density. Nano Letters, 2019, 19, 1418-1427.	4.5	23
66	Block Copolymer Brush Layer-Templated Gold Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Optophysiology. ACS Applied Materials & Interfaces, 2019, 11, 4373-4384.	4.0	39
67	NTA-Co3+-His6 versus NTA-Ni2+-His6 mediated E-Cadherin surface immobilization enhances cellular traction. Biomaterials, 2019, 192, 171-178.	5.7	10
68	Combined â€~moth-eye' structured and graded index-layer anti-reflecting coating for high index glasses. Optics Express, 2019, 27, 34655.	1.7	13
69	Droplet-stabilized giant lipid vesicles as compartments for synthetic biology. , 2019, , 601-617.		0
70	Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends in Biotechnology, 2018, 36, 938-951.	4.9	205
71	Spherical network contraction forms microtubule asters in confinement. Soft Matter, 2018, 14, 901-909.	1.2	29
72	Tailored environments to study motile cells and pathogens. Cellular Microbiology, 2018, 20, e12820.	1.1	13

#	Article	IF	CITATIONS
73	The spatial molecular pattern of integrin recognition sites and their immobilization to colloidal nanobeads determine α2β1 integrin-dependent platelet activation. Biomaterials, 2018, 167, 107-120.	5.7	12
74	Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials, 2018, 17, 89-96.	13.3	314
75	Cell–Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research. Nano Letters, 2018, 18, 1-8.	4.5	103
76	Nanoscale Tuning of VCAM-1 Determines VLA-4–Dependent Melanoma Cell Plasticity on RGD Motifs. Molecular Cancer Research, 2018, 16, 528-542.	1.5	14
77	Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in Clathrin-Mediated Endocytosis. ACS Infectious Diseases, 2018, 4, 1585-1600.	1.8	18
78	Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nature Communications, 2018, 9, 3469.	5.8	124
79	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
80	Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab on A Chip, 2018, 18, 2665-2674.	3.1	63
81	Laminin-521 promotes quiescence in isolated stellate cells from rat liver. Biomaterials, 2018, 180, 36-51.	5.7	15
82	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
83	Combining Adhesive Nanostructured Surfaces and Costimulatory Signals to Increase T Cell Activation. Nano Letters, 2018, 18, 5899-5904.	4.5	27
84	Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites. Advanced Healthcare Materials, 2017, 6, 1601178.	3.9	17
85	A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Scientific Reports, 2017, 7, 39805.	1.6	425
86	Focal adhesion stabilization by enhanced integrin-cRGD binding affinity. BioNanoMaterials, 2017, 18, .	1.4	10
87	Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5647-5652.	3.3	370
88	Fibronectin promotes directional persistence in fibroblast migration through interactions with both its cell-binding and heparin-binding domains. Scientific Reports, 2017, 7, 3711.	1.6	33
89	Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Scientific Reports, 2017, 7, 45152.	1.6	24
90	Reconceptualizing Fluorescence Correlation Spectroscopy for Monitoring and Analyzing Periodically Passing Objects. Analytical Chemistry, 2017, 89, 11672-11678.	3.2	7

#	Article	IF	CITATIONS
91	Highly Ordered Gold Nanopatterned Indium Tin Oxide Electrodes for Simultaneous Optical and Electrochemical Probing Cell Interactions. Analytical Chemistry, 2017, 89, 10054-10062.	3.2	15
92	Inverse Moth Eye Nanostructures with Enhanced Antireflection and Contamination Resistance. ACS Omega, 2017, 2, 5012-5018.	1.6	16
93	Integrin-Assisted T-Cell Activation on Nanostructured Hydrogels. Nano Letters, 2017, 17, 6110-6116.	4.5	74
94	Investigating Focal Adhesion Substructures by Localization Microscopy. Biophysical Journal, 2017, 113, 2508-2518.	0.2	20
95	Nanopatterned Adhesive, Stretchable Hydrogel to Control Ligand Spacing and Regulate Cell Spreading and Migration. ACS Nano, 2017, 11, 8282-8291.	7.3	86
96	Distance-dependent adhesion of vascular cells on biofunctionalized nanostructures. Current Directions in Biomedical Engineering, 2017, 3, 683-686.	0.2	0
97	A unique profilin-actin interface is important for malaria parasite motility. PLoS Pathogens, 2017, 13, e1006412.	2.1	50
98	Functional fusion of living systems with synthetic electrode interfaces. Beilstein Journal of Nanotechnology, 2016, 7, 296-301.	1.5	9
99	Precise AuxPt1â^'x Alloy Nanoparticle Array of Tunable Composition for Catalytic Applications. Scientific Reports, 2016, 6, 20536.	1.6	5
100	Getting a grip on collective cell migration. Nature Cell Biology, 2016, 18, 1265-1267.	4.6	5
101	Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin. Scientific Reports, 2016, 6, 23258.	1.6	50
102	Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events. Nano Letters, 2016, 16, 3866-3871.	4.5	107
103	Direct patterning of vortex generators on a fiber tip using a focused ion beam. Optics Letters, 2016, 41, 2133.	1.7	28
104	Application of synthetic biology approaches for understanding encounters between cells and their microenvironment. Cell Adhesion and Migration, 2016, 10, 447-450.	1.1	2
105	Exploiting Noncovalent Interactions in an Imineâ€Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, 8749-8754.	11.1	302
106	Template-assisted extrusion of biopolymer nanofibers under physiological conditions. Integrative Biology (United Kingdom), 2016, 8, 1059-1066.	0.6	28
107	Photocleavable linker for the patterning of bioactive molecules. Scientific Reports, 2016, 5, 18309.	1.6	44
108	Cobalt Cross-Linked Redox-Responsive PEG Hydrogels: From Viscoelastic Liquids to Elastic Solids. Macromolecules, 2016, 49, 4229-4235.	2.2	63

#	Article	IF	CITATIONS
109	Cobalt(III)â€Mediated Permanent and Stable Immobilization of Histidineâ€Tagged Proteins on NTAâ€Functionalized Surfaces. Chemistry - A European Journal, 2016, 22, 3156-3162.	1.7	39
110	Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration. ACS Nano, 2016, 10, 2091-2102.	7.3	47
111	Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Developmental Biology, 2016, 409, 55-71.	0.9	44
112	Selective binding and lateral clustering of α 5 β 1 and α v β 3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adhesion and Migration, 2016, 10, 505-515.	1.1	37
113	Nanoscale and mechanical properties of the physiological cell–ECM microenvironment. Experimental Cell Research, 2016, 343, 3-6.	1.2	78
114	Synthesis of Binary Nanopatterns on Hydrogels for Initiating Cellular Responses. Chemistry of Materials, 2016, 28, 1806-1815.	3.2	31
115	In vitro cancer cell–ECM interactions inform in vivo cancer treatment. Advanced Drug Delivery Reviews, 2016, 97, 270-279.	6.6	162
116	Synthetische Adhäion von Integrinâ€Liposomen als minimales Zellmodell. Angewandte Chemie, 2015, 127, 12649-12655.	1.6	3
117	Segregation Versus Colocalization: Orthogonally Functionalized Binary Micropatterned Substrates Regulate the Molecular Distribution in Focal Adhesions. Advanced Materials, 2015, 27, 3737-3747.	11.1	34
118	Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein Journal of Organic Chemistry, 2015, 11, 773-783.	1.3	47
119	Freely drawn single lipid nanotube patterns. Soft Matter, 2015, 11, 2029-2035.	1.2	6
120	Nanoscale Control of Surface Immobilized BMP-2: Toward a Quantitative Assessment of BMP-Mediated Signaling Events. Nano Letters, 2015, 15, 1526-1534.	4.5	87
121	Key Factors for Stable Retention of Fluorophores and Labeled Biomolecules in Droplet-Based Microfluidics. Analytical Chemistry, 2015, 87, 2063-2067.	3.2	30
122	Featured Article: Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain. Experimental Biology and Medicine, 2015, 240, 1298-1309.	1.1	16
123	A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology, 2015, 17, 276-287.	4.6	314
124	Minimal Synthetic Cells to Study Integrinâ€₦ediated Adhesion. Angewandte Chemie - International Edition, 2015, 54, 12472-12478.	7.2	29
125	Receptor clustering control and associated force sensing by surface patterning: when force matters. Nanomedicine, 2015, 10, 681-684.	1.7	9
126	Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nature Communications, 2015, 6, 8042.	5.8	140

#	Article	IF	CITATIONS
127	Nanopore Diameters Tune Strain in Extruded Fibronectin Fibers. Nano Letters, 2015, 15, 6357-6364.	4.5	26
128	A Photoactivatable Nanopatterned Substrate for Analyzing Collective Cell Migration with Precisely Tuned Cell-Extracellular Matrix Ligand Interactions. PLoS ONE, 2014, 9, e91875.	1.1	40
129	Model systems for studying cell adhesion and biomimetic actin networks. Beilstein Journal of Nanotechnology, 2014, 5, 1193-1202.	1.5	18
130	Optimizing the fabrication of diffractive optical elements using a focused ion beam system. , 2014, , .		3
131	Preparation of stable micropatterns of gold on cell-adhesion-resistant hydrogels assisted by a hetero-bifunctional macromonomer linker. Science China Chemistry, 2014, 57, 645-653.	4.2	13
132	$s^{0} = 1$ (1-1) so that the second	2.2	6
133	Interface Immobilization Chemistry of <i>c</i> RGDâ€based Peptides Regulates Integrin Mediated Cell Adhesion. Advanced Functional Materials, 2014, 24, 943-956.	7.8	57
134	Dual-Functionalized Nanostructured Biointerfaces by Click Chemistry. Langmuir, 2014, 30, 6897-6905.	1.6	36
135	Soft/Elastic Nanopatterned Biointerfaces in the Service of Cell Biology. Methods in Cell Biology, 2014, 119, 237-260.	0.5	9
136	Combined Effects of PEG Hydrogel Elasticity and Cell-Adhesive Coating on Fibroblast Adhesion and Persistent Migration. Biomacromolecules, 2014, 15, 195-205.	2.6	74
137	Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium–niobium alloy surfaces. Interface Focus, 2014, 4, 20130046.	1.5	20
138	Plasmonic Nanopipette Biosensor. Analytical Chemistry, 2014, 86, 8998-9005.	3.2	39
139	Nanoparticle Tension Probes Patterned at the Nanoscale: Impact of Integrin Clustering on Force Transmission. Nano Letters, 2014, 14, 5539-5546.	4.5	124
140	Engineering of synthetic cellular microenvironments: Implications for immunity. Journal of Autoimmunity, 2014, 54, 100-111.	3.0	33
141	Stable Biochemically Micro-patterned Hydrogel Layers Control Specific Cell Adhesion and Allow Long Term Cyclic Tensile Strain Experiments. Macromolecular Bioscience, 2014, 14, 1547-1555.	2.1	7
142	Effective polyethylene glycol passivation for the inhibition of surface interactions of peripheral blood mononuclear cells and platelets. Biointerphases, 2013, 8, 14.	0.6	9
143	Vinculin Regulates the Recruitment and Release of Core Focal Adhesion Proteins in a Force-Dependent Manner. Current Biology, 2013, 23, 271-281.	1.8	310
144	Adhesion Maturation of Neutrophils on Nanoscopically Presented Platelet Glycoprotein Ibα. ACS Nano, 2013, 7, 9984-9996.	7.3	51

#	Article	IF	CITATIONS
145	Real-time monitoring of electrochemical controlled protein adsorption by a plasmonic nanowire based sensor. Chemical Communications, 2013, 49, 8326.	2.2	19
146	The role of integrin-linked kinase in the molecular architecture of focal adhesions. Journal of Cell Science, 2013, 126, 4099-107.	1.2	75
147	Cell Migration: Tunable Substrates Unveil Chemical Complementation of a Genetic Cell Migration Defect (Adv. Healthcare Mater. 8/2013). Advanced Healthcare Materials, 2013, 2, 1161-1161.	3.9	0
148	Goldâ€Nanoparticleâ€Decorated Glass Microspheres. Particle and Particle Systems Characterization, 2013, 30, 940-944.	1.2	3
149	Artificial Antigenâ€Presenting Interfaces in the Service of Immunology. Israel Journal of Chemistry, 2013, 53, 655-669.	1.0	6
150	Toward Controlling the Formation, Degradation Behavior, and Properties of Hydrogels Synthesized by Azaâ€Michael Reactions. Macromolecular Chemistry and Physics, 2013, 214, 1865-1873.	1.1	18
151	Formation of Large 2D Arrays of Shapeâ€Controlled Colloidal Nanoparticles at Variable Interparticle Distances. Particle and Particle Systems Characterization, 2013, 30, 102-108.	1.2	27
152	Functionalizing αvβ3―or α5β1‧elective Integrin Antagonists for Surface Coating: A Method To Discriminate Integrin Subtypes Inâ€Vitro. Angewandte Chemie - International Edition, 2013, 52, 1572-1575.	7.2	80
153	Colloidal Nanoparticles: Formation of Large 2D Arrays of Shape ontrolled Colloidal Nanoparticles at Variable Interparticle Distances (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30, 2-2.	1.2	1
154	The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials, 2013, 34, 2530-2538.	5.7	68
155	TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale, 2013, 5, 3808.	2.8	97
156	Biselectivity of isoDGR Peptides for Fibronectin Binding Integrin Subtypes α5β1 and αvβ6: Conformational Control through Flanking Amino Acids. Journal of Medicinal Chemistry, 2013, 56, 1509-1519.	2.9	67
157	Tunable Substrates Unveil Chemical Complementation of a Genetic Cell Migration Defect. Advanced Healthcare Materials, 2013, 2, 1162-1169.	3.9	23
158	Advances in Experimental Cell Biology and Cell-Material Interactions. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 87-105.	0.3	0
159	Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. Journal of the American Chemical Society, 2013, 135, 7159-7171.	6.6	48
160	Surface properties of nanostructured bio-active interfaces: impacts of surface stiffness and topography on cellâ \in "surface interactions. RSC Advances, 2013, 3, 13293.	1.7	25
161	A Molecular Toolkit for the Functionalization of Titaniumâ€Based Biomaterials That Selectively Control Integrinâ€Mediated Cell Adhesion. Chemistry - A European Journal, 2013, 19, 9218-9223.	1.7	53
162	Synthesis of Nanostructured and Biofunctionalized Water-in-Oil Droplets as Tools for Homing T Cells. Journal of the American Chemical Society, 2013, 135, 3339-3342.	6.6	59

#	Article	IF	CITATIONS
163	T Cell Activation is Determined by the Number of Presented Antigens. Nano Letters, 2013, 13, 5619-5626.	4.5	112
164	Marker-Free Phenotyping of Tumor Cells by Fractal Analysis of Reflection Interference Contrast Microscopy Images. Nano Letters, 2013, 13, 5474-5479.	4.5	34
165	Cell membrane topology analysis by RICM enables marker-free adhesion strength quantification. Biointerphases, 2013, 8, 28.	0.6	20
166	Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration. Biointerphases, 2013, 8, 32.	0.6	64
167	Fine Tuning and Efficient T Cell Activation with Stimulatory aCD3 Nanoarrays. Nano Letters, 2013, 13, 5090-5097.	4.5	102
168	Increasing the Order Parameter of Quasi-Hexagonal Micellar Nanostructures by Ultrasound Annealing. Langmuir, 2013, 29, 989-993.	1.6	12
169	Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels. Scientific Reports, 2013, 3, 2043.	1.6	13
170	Hydrogel Micropillars with Integrin Selective Peptidomimetic Functionalized Nanopatterned Tops: A New Tool for the Measurement of Cell Traction Forces Transmitted through α _v l² ₃ ―or α ₅ l² ₁ â€Integrins. Advanced Materials, 2013, 25, 5869-5874.	11.1	54
171	Cobalt(III) as a Stable and Inert Mediator Ion between NTA and His6â€Tagged Proteins. Angewandte Chemie - International Edition, 2013, 52, 7593-7596.	7.2	90
172	Cyclic Tensile Strain Controls Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in Spreading Cells. PLoS ONE, 2013, 8, e77328.	1.1	96
173	Antireflective "moth-eye―structures on tunable optical silicone membranes. Applied Optics, 2012, 51, 4370.	0.9	15
174	Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques. Applied Optics, 2012, 51, 8.	0.9	20
175	Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. Journal of Cell Science, 2012, 125, 3765-75.	1.2	90
176	Circular, nanostructured and biofunctionalized hydrogel microchannels for dynamic cell adhesion studies. Lab on A Chip, 2012, 12, 3285.	3.1	35
177	Macromol. Rapid Commun. 17/2012. Macromolecular Rapid Communications, 2012, 33, 1496-1496.	2.0	0
178	Cross‣ectional Characterization of Electrodeposited, Monocrystalline Au Nanowires in Parallel Arrangement. Small, 2012, 8, 3396-3399.	5.2	7
179	Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012, 11, 642-649.	13.3	1,346
180	Au–Ag Hybrid Nanoparticle Patterns of Tunable Size and Density on Glass and Polymeric Supports. Langmuir, 2012, 28, 1562-1568.	1.6	45

#	Article	IF	CITATIONS
181	Depending on Its Nano-Spacing, ALCAM Promotes Cell Attachment and Axon Growth. PLoS ONE, 2012, 7, e40493.	1.1	15
182	Cyclic Stretch Induces Cell Reorientation on Substrates by Destabilizing Catch Bonds in Focal Adhesions. PLoS ONE, 2012, 7, e48346.	1.1	46
183	Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. Journal of Cell Science, 2012, 125, 2148-2159.	1.2	80
184	Lessons from nature: biomimetic subwavelength structures for highâ€performance optics. Laser and Photonics Reviews, 2012, 6, 641-659.	4.4	74
185	Artificial Niches: Biomimetic Materials for Hematopoietic Stem Cell Culture. Macromolecular Rapid Communications, 2012, 33, 1432-1438.	2.0	39
186	Direct Manipulation of Malaria Parasites with Optical Tweezers Reveals Distinct Functions of Plasmodium Surface Proteins. ACS Nano, 2012, 6, 4648-4662.	7.3	39
187	Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior. Biomaterials, 2012, 33, 2409-2418.	5.7	128
188	The significance of integrin ligand nanopatterning on lipid raft clustering in hematopoietic stem cells. Biomaterials, 2012, 33, 3107-3118.	5.7	69
189	Regulation of Integrin Adhesions by Varying the Density of Substrate-Bound Epidermal Growth Factor. Biointerphases, 2012, 7, 23.	0.6	14
190	Investigating Cell-ECM Contact Changes in Response to Hypoosmotic Stimulation of Hepatocytes In Vivo with DW-RICM. PLoS ONE, 2012, 7, e48100.	1.1	6
191	Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. Development (Cambridge), 2012, 139, e1-e1.	1.2	0
192	Growth mechanisms of phthalocyanine nanowires induced by Au nanoparticle templates. Physical Chemistry Chemical Physics, 2011, 13, 5940.	1.3	18
193	Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks. Physical Chemistry Chemical Physics, 2011, 13, 13395.	1.3	10
194	Induction of Malaria Parasite Migration by Synthetically Tunable Microenvironments. Nano Letters, 2011, 11, 4468-4474.	4.5	30
195	Impact of Local versus Global Ligand Density on Cellular Adhesion. Nano Letters, 2011, 11, 1469-1476.	4.5	149
196	Measuring Forces between Two Single Actin Filaments during Bundle Formation. Nano Letters, 2011, 11, 3676-3680.	4.5	28
197	Benzyl Alcohol and Block Copolymer Micellar Lithography: A Versatile Route to Assembling Gold and in Situ Generated Titania Nanoparticles into Uniform Binary Nanoarrays. ACS Nano, 2011, 5, 6355-6364.	7.3	65
198	Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases, 2011, 6, MR1-MR12.	0.6	118

#	Article	IF	CITATIONS
199	Microstructured platforms to study nanotube-mediated long-distance cell-to-cell connections. Biointerphases, 2011, 6, 22-31.	0.6	6
200	Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network. Biointerphases, 2011, 6, 79-85.	0.6	21
201	Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions. Biointerphases, 2011, 6, 117-125.	0.6	11
202	<i>In vitro</i> observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases, 2011, 6, 171-179.	0.6	15
203	Soft lithography detects partial mechano-sensoric blindness to micrometre topography in cultured aged and diseased cells. International Journal of Materials Research, 2011, 102, 896-902.	0.1	2
204	Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response. Beilstein Journal of Nanotechnology, 2011, 2, 545-551.	1.5	13
205	Cyclic stretch increases splicing noise rate in cultured human fibroblasts. BMC Research Notes, 2011, 4, 470.	0.6	2
206	Ageâ€Đependent Changes in Microscale Stiffness and Mechanoresponses of Cells. Small, 2011, 7, 1480-1487.	5.2	45
207	Single cell force spectroscopy of T cells recognizing a myelin-derived peptide on antigen presenting cells. Immunology Letters, 2011, 136, 13-20.	1.1	27
208	Intelligent induction of active biosystem responses at interfaces. International Journal of Materials Research, 2011, 102, 796-808.	0.1	7
209	Antireflective 'moth-eye' structures fabricated by a cheap and versatile process on various optical elements. , 2011, , .		0
210	Environmental Constraints Guide Migration of Malaria Parasites during Transmission. PLoS Pathogens, 2011, 7, e1002080.	2.1	57
211	Actin Fusion Proteins Alter the Dynamics of Mechanically Induced Cytoskeleton Rearrangement. PLoS ONE, 2011, 6, e22941.	1.1	44
212	High-Resolution Microscopy on Nanostructured Interfaces. Microscopy Today, 2010, 18, 30-33.	0.2	0
213	Low-Temperature Growth of Silicon Nanotubes and Nanowires on Amorphous Substrates. ACS Nano, 2010, 4, 1805-1812.	7.3	31
214	Soft micropillar interfaces of distinct biomechanics govern behaviour of periodontal cells. European Journal of Cell Biology, 2010, 89, 315-325.	1.6	20
215	The kinetics of forceâ€induced cell reorganization depend on microtubules and actin. Cytoskeleton, 2010, 67, 241-250.	1.0	31
216	Stimulation of Cell Adhesion at Nanostructured Teflon Interfaces. Advanced Materials, 2010, 22, 5499-5506.	11.1	41

#	Article	IF	CITATIONS
217	Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching. Electrochemistry Communications, 2010, 12, 565-569.	2.3	13
218	Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials, 2010, 31, 250-258.	5.7	101
219	Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity, 2010, 32, 703-713.	6.6	282
220	Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biology, 2010, 12, 909-915.	4.6	213
221	Impact of Tumor Cell Cytoskeleton Organization on Invasiveness and Migration: A Microchannel-Based Approach. PLoS ONE, 2010, 5, e8726.	1.1	142
222	Analyzing the Mesoscopic Structure of Pericellular Coats on Living Cells. Materials Research Society Symposia Proceedings, 2010, 1274, 1.	0.1	0
223	Force-induced destabilization of focal adhesions at defined integrin spacings on nanostructured surfaces. Physical Review E, 2010, 81, 051914.	0.8	14
224	Continuous Photobleaching to Study the Growth Modes of Focal Adhesions. Journal of Adhesion Science and Technology, 2010, 24, 2323-2334.	1.4	4
225	Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics. Journal of Physics Condensed Matter, 2010, 22, 194108.	0.7	14
226	Tailored antireflective biomimetic nanostructures for UV applications. Nanotechnology, 2010, 21, 425301.	1.3	33
227	Cell Adhesion Strength Is Controlled by Intermolecular Spacing of Adhesion Receptors. Biophysical Journal, 2010, 98, 543-551.	0.2	187
228	Polymeric Substrates with Tunable Elasticity and Nanoscopically Controlled Biomolecule Presentation. Langmuir, 2010, 26, 15472-15480.	1.6	75
229	On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica. Langmuir, 2010, 26, 1029-1034.	1.6	51
230	Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations. Optics Express, 2010, 18, 23878.	1.7	19
231	Integrin-Linked Kinase Controls Microtubule Dynamics Required for Plasma Membrane Targeting of Caveolae. Developmental Cell, 2010, 19, 574-588.	3.1	154
232	Conjugation of Peptides to the Passivation Shell of Gold Nanoparticles for Targeting of Cell-Surface Receptors. ACS Nano, 2010, 4, 6617-6628.	7.3	94
233	Differential adhesion of fibroblast and neuroblastoma cells on size- and geometry-controlled nanofibrils of the extracellular matrix. Soft Matter, 2010, 6, 113-119.	1.2	13
234	Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Science, 2009, 122, 3644-3651.	1.2	104

#	Article	IF	CITATIONS
235	Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17852-17857.	3.3	109
236	MOTOR PROTEIN DRIVEN MICROTUBULE TRANSPORT ON GOLD PARTICLE NANOPATTERNS. Biophysical Reviews and Letters, 2009, 04, 153-162.	0.9	0
237	Magnesium-based Biodegradable Nanostructured Substrates: Hybrid Materials for Cellular Engraftment. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	1
238	BIOMIMETIC MODELS OF THE ACTIN CORTEX. Biophysical Reviews and Letters, 2009, 04, 17-32.	0.9	6
239	Biomimetic Fâ€Actin Cortex Models. ChemPhysChem, 2009, 10, 2777-2786.	1.0	7
240	Microâ€Nanostructured Protein Arrays: A Tool for Geometrically Controlled Ligand Presentation. Small, 2009, 5, 1014-1018.	5.2	49
241	Adaptive force transmission in amoeboid cell migration. Nature Cell Biology, 2009, 11, 1438-1443.	4.6	267
242	Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 2009, 10, 21-33.	16.1	2,205
243	Titanium–silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy. Thin Solid Films, 2009, 517, 2048-2054.	0.8	5
244	Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano–micro range. Acta Biomaterialia, 2009, 5, 2460-2466.	4.1	261
245	Chromatin Shapes the Mitotic Spindle. Cell, 2009, 138, 502-513.	13.5	84
246	Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host and Microbe, 2009, 6, 551-562.	5.1	163
247	Integrin reconstituted in GUVs: A biomimetic system to study initial steps of cell spreading. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2291-2300.	1.4	60
248	Impact of Order and Disorder in RGD Nanopatterns on Cell Adhesion. Nano Letters, 2009, 9, 1111-1116.	4.5	501
249	Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter, 2009, 5, 72-77.	1.2	167
250	One-Dimensional Phthalocyanine Nanostructures Directed by Gold Templates. Chemistry of Materials, 2009, 21, 5010-5015.	3.2	15
251	Optical force sensor array in a microfluidic device based on holographic optical tweezers. Lab on A Chip, 2009, 9, 661.	3.1	36
252	Mapping the mechanics and macromolecular organization of hyaluronan-rich cell coats. Soft Matter, 2009, 5, 4331.	1.2	30

#	Article	IF	CITATIONS
253	Quantification and Reactivity of Functional Groups in the Ligand Shell of PEGylated Gold Nanoparticles via a Fluorescence-Based Assay. Langmuir, 2009, 25, 7910-7917.	1.6	53
254	Nanoscale Arrangement of Apoptotic Ligands Reveals a Demand for a Minimal Lateral Distance for Efficient Death Receptor Activation. Nano Letters, 2009, 9, 4240-4245.	4.5	42
255	Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules. BMC Cell Biology, 2008, 9, 64.	3.0	26
256	Entspiegelung nach dem Vorbild von Mottenaugen. Physik in Unserer Zeit, 2008, 39, 266-267.	0.0	0
257	Selfâ€Assembly of Phthalocyanine Nanotubes by Vaporâ€Phase Transport. ChemPhysChem, 2008, 9, 1114-1116.	1.0	11
258	Connectiveâ€Tissue Fibroblasts Established on Micropillar Interfaces are Pivotal for Epithelialâ€Tissue Morphogenesis. Advanced Functional Materials, 2008, 18, 2919-2929.	7.8	18
259	Synthesis of Quasiâ€Hexagonal Ordered Arrays of Metallic Nanoparticles with Tuneable Particle Size. Advanced Materials, 2008, 20, 2297-2302.	11.1	118
260	Cell adhesion and polarisation on molecularly defined spacing gradient surfaces of cyclic RGDfK peptide patches. European Journal of Cell Biology, 2008, 87, 743-750.	1.6	78
261	Propagation of Mechanical Stress through the Actin Cytoskeleton toward Focal Adhesions: Model and Experiment. Biophysical Journal, 2008, 94, 1470-1482.	0.2	92
262	Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates. Biophysical Journal, 2008, 95, 3470-3478.	0.2	221
263	Cooperativity in Adhesion Cluster Formation during Initial Cell Adhesion. Biophysical Journal, 2008, 95, 5424-5431.	0.2	114
264	Tastsensitivitäbiologischer Zellen auf der Nanometerskala. Nachrichten Aus Der Chemie, 2008, 56, 878-881.	0.0	0
265	Biomimetic Interfaces for High-Performance Optics in the Deep-UV Light Range. Nano Letters, 2008, 8, 1429-1433.	4.5	146
266	Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 2008, 4, 1998.	1.2	52
267	Assembly of Multilayer Arrays of Viral Nanoparticles via Biospecific Recognition: A Quartz Crystal Microbalance with Dissipation Monitoring Study. Biomacromolecules, 2008, 9, 456-462.	2.6	56
268	Induction of Cell Polarization and Migration by a Gradient of Nanoscale Variations in Adhesive Ligand Spacing. Nano Letters, 2008, 8, 2063-2069.	4.5	292
269	Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray. Biomacromolecules, 2008, 9, 2569-2572.	2.6	52
270	Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP Journal, 2008, 2, 276-285.	2.5	106

#	Article	IF	CITATIONS
271	Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions. Physical Biology, 2008, 5, 046004.	0.8	50
272	Actin-cytoskeleton dynamics in non-monotonic cell spreading. Cell Adhesion and Migration, 2008, 2, 58-68.	1.1	26
273	A Crucial Role for Primary Cilia in Cortical Morphogenesis. Journal of Neuroscience, 2008, 28, 12887-12900.	1.7	119
274	Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties. Journal of Micromechanics and Microengineering, 2008, 18, 115011.	1.5	35
275	Product piracy from nature: biomimetic microstructures and interfaces for high-performance optics. Proceedings of SPIE, 2008, , .	0.8	6
276	Generation of Bioactive Nanostructured Interfaces to Mimic Cellular Microenvironments. Materials Research Society Symposia Proceedings, 2007, 1062, 1.	0.1	0
277	Syndecan-4–dependent Rac1 regulation determines directional migration in response to the extracellular matrix. Journal of Cell Biology, 2007, 177, 527-538.	2.3	221
278	Molecular Engineering of Cellular Environments: Cell Adhesion to Nanoâ€Đigital Surfaces. Methods in Cell Biology, 2007, 83, 89-111.	0.5	98
279	Cellular chemomechanics at interfaces: sensing, integration and response. Soft Matter, 2007, 3, 307.	1.2	114
280	Cell-assisted assembly of colloidal crystallites. Soft Matter, 2007, 3, 337-348.	1.2	25
281	Mimicking Cellular Environments by Nanostructured Soft Interfaces. Nano Letters, 2007, 7, 1413-1418.	4.5	130
282	Cell adhesion molecule DM-GRASP presented as nanopatterns to neurons regulates attachment and neurite growth. Soft Matter, 2007, 3, 1486.	1.2	18
283	Early Keratinocyte Differentiation on Micropillar Interfaces. Nano Letters, 2007, 7, 287-294.	4.5	49
284	Membrane-Grafted Hyaluronan Films:Â A Well-Defined Model System of Glycoconjugate Cell Coats. Journal of the American Chemical Society, 2007, 129, 5306-5307.	6.6	70
285	Site-specific presentation of single recombinant proteins in defined nanoarrays. Biointerphases, 2007, 2, 44-48.	0.6	56
286	Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands. Biophysical Journal, 2007, 92, 2964-2974.	0.2	840
287	Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces. Biomaterials, 2007, 28, 4739-4747.	5.7	199
288	Biomimetic Models of the Actin Cytoskeleton. Small, 2007, 3, 1015-1022.	5.2	20

#	Article	IF	CITATIONS
289	Influence of Different ECM Mimetic Peptide Sequences Embedded in a Nonfouling Environment on the Specific Adhesion of Human-Skin Keratinocytes and Fibroblasts on Deformable Substrates. Small, 2007, 3, 1023-1031.	5.2	76
290	Three-Dimensional Modeling of Mechanical Forces in the Extracellular Matrix during Epithelial Lumen Formation. Biophysical Journal, 2006, 90, 4380-4391.	0.2	32
291	Tuning Surface Energies with Nanopatterned Substrates. Nano Letters, 2006, 6, 267-270.	4.5	18
292	Cellular Unbinding Forces of Initial Adhesion Processes on Nanopatterned Surfaces Probed with Magnetic Tweezers. Nano Letters, 2006, 6, 398-402.	4.5	93
293	Tuning the orbital angular momentum in optical vortex beams. Optics Express, 2006, 14, 6604.	1.7	83
294	Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. European Journal of Cell Biology, 2006, 85, 219-224.	1.6	336
295	Building up micromuscles. Nature Materials, 2005, 4, 115-116.	13.3	23
296	Electrical Resistivity of Epitaxial Au Films Surface-Modulated by Arrays of Pt Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3691-3698.	1.0	3
297	Mechanical Response Analysis and Power Generation by Single-Cell Stretching. ChemPhysChem, 2005, 6, 663-670.	1.0	57
298	A Theoretical Description of Elastic Pillar Substrates in Biophysical Experiments. ChemPhysChem, 2005, 6, 1492-1498.	1.0	40
299	Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Experiments in Fluids, 2005, 39, 464-474.	1.1	95
300	Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 2005, 1, 15-30.	4.1	748
301	A fluorescence-based assay for exopeptidases using self-quenching peptide probes with single-molecule sensitivity. International Journal of Environmental Analytical Chemistry, 2005, 85, 741-751.	1.8	6
302	Ultrathin Coatings from Isocyanate-Terminated Star PEG Prepolymers:  Layer Formation and Characterization. Langmuir, 2005, 21, 1991-1999.	1.6	61
303	Microtubule Gliding and Cross-Linked Microtubule Networks on Micropillar Interfaces. Nano Letters, 2005, 5, 2630-2634.	4.5	50
304	High-precision steering of multiple holographic optical traps. Optics Express, 2005, 13, 8678.	1.7	60
305	Symmetry dependence of holograms for optical trapping. Optics Letters, 2005, 30, 2086.	1.7	79

#	Article	IF	CITATIONS
307	Geometric organization of the extracellular matrix in the control of integrin-mediated adhesion and cell function in osteoblasts. Progress in Orthodontics, 2005, 6, 232-7.	1.3	13
308	Constructing and probing biomimetic models of the actin cortex with holographic optical tweezers. , 2004, 5514, 446.		7
309	Block copolymer micelle nanolithography on non-conductive substrates. New Journal of Physics, 2004, 6, 101-101.	1.2	48
310	Cell Shape Normalization, Dendrite Orientation, and Melanin Production of Normal and Genetically Altered (Haploinsufficient NF1)-Melanocytes by Microstructured Substrate Interactions. ChemPhysChem, 2004, 5, 85-92.	1.0	47
311	Activation of Integrin Function by Nanopatterned Adhesive Interfaces. ChemPhysChem, 2004, 5, 383-388.	1.0	1,093
312	Accurate delivery of single biomolecules by polyethylene glycol coated submicrometer pipettes. Chemical Physics, 2004, 301, 105-110.	0.9	8
313	Cell Shape Normalization of Normal and Haploinsufficient NF1-Melanocytes by Micro-Structured Substrate Interaction. , 2004, , 185-197.		0
314	Getting a grip: hyaluronan-mediated cellular adhesion. , 2004, , .		5
315	Freely Suspended Actin Cortex Models on Arrays of Microfabricated Pillars. ChemPhysChem, 2003, 4, 872-877.	1.0	41
316	Freely Suspended Actin Cortex Models on Arrays of Microfabricated Pillars. ChemPhysChem, 2003, 4, 908-908.	1.0	1
317	Reactive Ion Etching of Cylindrical Polyferrocenylsilane Block Copolymer Micelles: Fabrication of Ceramic Nanolines on Semiconducting Substrates. Advanced Functional Materials, 2003, 13, 271-276.	7.8	105
318	A Micellar Route to Ordered Arrays of Magnetic Nanoparticles: From Size-Selected Pure Cobalt Dots to Cobalt–Cobalt Oxide Core–Shell Systems. Advanced Functional Materials, 2003, 13, 359-364.	7.8	113
319	Micro-Nanostructured Interfaces Fabricated by the Use of Inorganic Block Copolymer Micellar Monolayers as Negative Resist for Electron-Beam Lithography. Advanced Functional Materials, 2003, 13, 569-575.	7.8	161
320	Micellar Nanoreactors—Preparation and Characterization of Hexagonally Ordered Arrays of Metallic Nanodots. Advanced Functional Materials, 2003, 13, 853-861.	7.8	216
321	Nanoporous Gold Films Created Using Templates Formed from Self-Assembled Structures of Inorganic–Block Copolymer Micelles. Advanced Materials, 2003, 15, 829-831.	11.1	84
322	Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biology, 2003, 5, 803-811.	4.6	234
323	Block copolymer micelle nanolithography. Nanotechnology, 2003, 14, 1153-1160.	1.3	492
324	Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers. Journal of Applied Physics, 2003, 93, 6252-6257.	1.1	68

#	Article	IF	CITATIONS
325	Genome Function and Nuclear Architecture: From Gene Expression to Nanoscience. Genome Research, 2003, 13, 1029-1041.	2.4	66
326	Oxidation-Resistant Gold-55 Clusters. Science, 2002, 297, 1533-1536.	6.0	484
327	Hierarchische selbstorganisierende Strukturen als Template für organisch-anorganische Nano- und Mikrostrukturen. Angewandte Chemie, 2002, 114, 3507-3510.	1.6	4
328	Fluorescence of Dyes Adsorbed on Highly Organized, Nanostructured Gold Surfaces. Chemistry - A European Journal, 2002, 8, 3808.	1.7	32
329	Nano- and Micropatterning by Organic–Inorganic Templating of Hierarchical Self-Assembled Structures. Angewandte Chemie - International Edition, 2002, 41, 3359-3362.	7.2	40
330	A Combined Top–Down/Bottom–Up Approach to the Microscopic Localization of Metallic Nanodots. Advanced Materials, 2002, 14, 1827-1832.	11.1	83
331	Fabrication of Oriented Nanoscopic Ceramic Lines from Cylindrical Micelles of an Organometallic Polyferrocene Block Copolymer. Journal of the American Chemical Society, 2001, 123, 3147-3148.	6.6	167
332	Sub-10 nm Gold Nanoarrays for Tethering Single Molecules. Materials Research Society Symposia Proceedings, 2001, 676, 441.	0.1	0
333	Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Applied Physics Letters, 2000, 77, 2949-2951.	1.5	346
334	Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films. Langmuir, 2000, 16, 407-415.	1.6	594
335	Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles. Macromolecules, 2000, 33, 4791-4798.	2.2	192
336	Orderâ^'Disorder Transition in Surface-Induced Nanopattern of Diblock Copolymer Films. Macromolecules, 2000, 33, 150-157.	2.2	53
337	STM studies on monolayers of [Co(L)4]A8 metallogrids on graphite. Applied Surface Science, 1999, 144-145, 456-460.	3.1	15
338	Micellar Inorganic-Polymer Hybrid Systems—A Tool for Nanolithography. Advanced Materials, 1999, 11, 149-153.	11.1	214
339	Controlled Arrangement of Supramolecular Metal Coordination Arrays on Surfaces. Angewandte Chemie - International Edition, 1999, 38, 2547-2550.	7.2	183
340	Nanolithographie mit selbstorganisierenden Masken: Mit Polymeren lassen sich Metallcluster geordnet auf einem Substrat deponieren. Physik Journal, 1999, 55, 49-52.	0.1	9
341	Nanostructuring by ultrathin diblock copolymer/titanium composite films. Scripta Materialia, 1999, 12, 383-386.	0.5	6
342	Nanopattern of Diblock Copolymers Selectively Adsorbed on a Plane Surface. Langmuir, 1999, 15, 7290-7298.	1.6	69

#	Article	IF	CITATIONS
343	Self-Assembly of Rodlike Hydrogen-Bonded Nanostructures. Journal of the American Chemical Society, 1999, 121, 7154-7155.	6.6	103
344	Micellar Inorganic–Polymer Hybrid Systems—A Tool for Nanolithography. , 1999, 11, 149.		4
345	Controlled Mineralization and Assembly of Hydrolysis-Based Nanoparticles in Organic Solvents Combining Polymer Micelles and Microwave Techniques. Advanced Materials, 1998, 10, 473-475.	11.1	67
346	Ultrathin Diblock Copolymer/Titanium Laminates—A Tool for Nanolithography. Advanced Materials, 1998, 10, 849-852.	11.1	69
347	Shape and quality control of modified scanning force microscopy tips. Ultramicroscopy, 1998, 75, 1-4.	0.8	10
348	Gold-Polypyrrole Core-Shell Particles in Diblock Copolymer Micelles. Advanced Materials, 1998, 10, 132-134.	11.1	236
349	A Polystyreneâ^'Oligothiopheneâ^'Polystyrene Triblock Copolymer. Journal of the American Chemical Society, 1998, 120, 2798-2804.	6.6	150
350	Inorganic Nanostructures on Surfaces Using Micellar Diblock Copolymer Templates. ACS Symposium Series, 1998, , 12-25.	0.5	11
351	Funktionalisierte Nanopartikel als Basis für neue Technologien. Nachrichten Aus Der Chemie, 1998, 46, 1056-1062.	0.0	2
352	Mineralization of gold in block copolymer micelles. Macromolecular Symposia, 1997, 117, 207-218.	0.4	18
353	Nanomosaic Surfaces by Lateral Phase Separation of a Diblock Copolymer. Macromolecules, 1997, 30, 3874-3880.	2.2	108
354	Tapping Scanning Force Microscopy in AirTheory and Experiment. Langmuir, 1997, 13, 4699-4703.	1.6	52
355	Mineralization of nanoparticles in block copolymer micelles. Current Opinion in Colloid and Interface Science, 1997, 2, 177-187.	3.4	81
356	Ion-Stabilized Block Copolymer Micelles:Â Film Formation and Intermicellar Interaction. Macromolecules, 1996, 29, 3220-3226.	2.2	211
357	Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films. Advanced Materials, 1996, 8, 337-340.	11.1	202
358	Substrate-induced lateral micro-phase separation of a diblock copolymer. Advanced Materials, 1996, 8, 513-517.	11.1	383
359	Metastabile inverse Kugelmicellen und micellare DrĤte aus Blockcopolymeren. Angewandte Chemie, 1996, 108, 1673-1676.	1.6	27
360	Mineralization of Gold Nanoparticles in a Block Copolymer Microemulsion. Chemistry - A European Journal, 1996, 2, 1552-1555.	1.7	144

#	Article	IF	CITATIONS
361	Metastable Reverse Globular Micelles and Giant Micellar Wires from Block Copolymers. Angewandte Chemie International Edition in English, 1996, 35, 1510-1512.	4.4	83
362	lmaging material properties by resonant tapping-force microscopy: A model investigation. Physical Review B, 1996, 54, 8908-8912.	1.1	136
363	Noble metal loaded block lonomers: micelle organization, adsorption of free chains and formation of thin films. Advanced Materials, 1995, 7, 731-735.	11.1	116
364	High pressure Brillouin study of incommensurate rubidium zinc chloride. Solid State Communications, 1995, 93, 177-181.	0.9	4
365	High-pressure conductivity study of template synthesized poly pyrrole: Observation of a crossover from three-to one-dimensional variable range hopping. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 929-940.	0.6	6
366	Forces affecting the substrate in resonant tapping force microscopy. Nanotechnology, 1995, 6, 40-44.	1.3	134
367	Observation of crossover from three- to two-dimensional variable-range hopping in template-synthesized polypyrrole and polyaniline. Physical Review B, 1994, 50, 14888-14892.	1.1	38