Szilvia Z TÃ³th

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 250-261.	1.0	386
2	A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynthesis Research, 2007, 93, 193-203.	2.9	176
3	Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 787-797.	1.0	154
4	Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Frontiers in Plant Science, 2014, 5, 188.	3.6	141
5	Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynthesis Research, 2014, 120, 43-58.	2.9	137
6	The Physiological Role of Ascorbate as Photosystem II Electron Donor: Protection against Photoinactivation in Heat-Stressed Leaves Â. Plant Physiology, 2011, 156, 382-392.	4.8	136
7	Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 295-305.	1.0	126
8	In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 275-282.	1.0	114
9	Experimental Evidence for Ascorbate-Dependent Electron Transport in Leaves with Inactive Oxygen-Evolving Complexes. Plant Physiology, 2009, 149, 1568-1578.	4.8	99
10	Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). Journal of Plant Physiology, 2005, 162, 181-194.	3.5	96
11	Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1032-1043.	1.0	88
12	Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. Journal of Experimental Botany, 2015, 66, 2373-2400.	4.8	87
13	The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 770-779.	1.0	65
14	Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle. Biotechnology for Biofuels, 2018, 11, 69.	6.2	61
15	The mechanism of photosystemâ€ <scp>II</scp> inactivation during sulphur deprivationâ€induced H ₂ production in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2018, 94, 548-561.	5.7	50
16	Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stressâ€induced response via the <i>VTC2</i> gene encoding GDPâ€ <scp>l</scp> â€galactose phosphorylase. New Phytologist, 2017, 214, 668-681.	7.3	47
17	Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. Photosynthetica, 2006, 44, 454-463.	1.7	41
18	Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex Â. Plant Physiology, 2014, 165, 1632-1646.	4.8	41

Szilvia Z TÃ³th

#	Article	IF	CITATIONS
19	Synthetic Antisense Oligodeoxynucleotides to Transiently Suppress Different Nucleus- and Chloroplast-Encoded Proteins of Higher Plant Chloroplasts Â. Plant Physiology, 2011, 157, 1628-1641.	4.8	40
20	Role of phosphatidylglycerol in the function and assembly of Photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1184-1194.	1.0	38
21	Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynthesis Research, 2019, 139, 449-460.	2.9	38
22	Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H ₂ production of the green alga <i>Chlamydomonas reinhardtii</i> . Plant, Cell and Environment, 2016, 39, 1460-1472.	5.7	35
23	Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in green algae. Biotechnology for Biofuels, 2019, 12, 280.	6.2	34
24	The physiological roles and metabolism of ascorbate in chloroplasts. Physiologia Plantarum, 2013, 148, 161-175.	5.2	33
25	H ⁺ Transport by K ⁺ EXCHANGE ANTIPORTER3 Promotes Photosynthesis and Growth in Chloroplast ATP Synthase Mutants. Plant Physiology, 2020, 182, 2126-2142.	4.8	32
26	Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxidants and Redox Signaling, 2018, 29, 1516-1533.	5.4	30
27	Light Control of Salt-Induced Proline Accumulation Is Mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1584.	3.6	28
28	Paradigm Shift in Algal H2 Production: Bypassing Competitive Processes. Trends in Biotechnology, 2019, 37, 1159-1163.	9.3	22
29	Identification and characterization of a stable intermediate in photosystem I assembly in tobacco. Plant Journal, 2017, 90, 478-490.	5.7	21
30	Ascorbate Deficiency Does Not Limit Nonphotochemical Quenching in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2020, 182, 597-611.	4.8	21
31	Identification of the Elusive Chloroplast Ascorbate Transporter Extends the Substrate Specificity of the PHT Family. Molecular Plant, 2015, 8, 674-676.	8.3	19
32	Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves. Physiologia Plantarum, 2012, 144, 83-97.	5.2	15
33	Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity. Bioresource Technology, 2021, 333, 125217.	9.6	13
34	Stimulatory effect of ascorbate, the alternative electron donor of photosystem II, on the hydrogen production of sulphur-deprived Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 2012, 37, 8864-8871.	7.1	11
35	Ascorbate inactivates the oxygenâ€evolving complex in prolonged darkness. Physiologia Plantarum, 2021, 171, 232-245.	5.2	10
36	Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Chlamydomonas reinhardtii on a Single-Cell Level. Cells, 2022, 11, 285.	4.1	6

Szilvia Z TÃ³th

#	Article	IF	CITATIONS
37	Viable protoplast formation of the coral endosymbiont alga <i>Symbiodinium</i> spp. in a microfluidics platform. Lab on A Chip, 2022, 22, 2986-2999.	6.0	4
38	Interplay between hydrogen production and photosynthesis in a green alga expressing an active photosystem I-hydrogenase chimera. International Journal of Hydrogen Energy, 2022, , .	7.1	3
39	On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions. Commentary on the article "Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures†by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015: 8:149. Biotechnology for Biofuels, 2017, 10, 116.	6.2	2
40	Naturally Occurring Alternative Electron Donors of Photosystem II. , 2008, , 691-695.		0
41	Ascorbate Alleviates Donor-Side Induced Photoinhibition by Acting as Alternative Electron Donor to Photosystem II. Advanced Topics in Science and Technology in China, 2013, , 505-509.	0.1	0