List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemical composition of exhausted coffee waste. Industrial Crops and Products, 2013, 50, 423-429.	5.2	220
2	Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 2016, 79, 274-282.	5.2	151
3	Cynara cardunculus L. $\hat{a} \in$ " a new fibre crop for pulp and paper production. Industrial Crops and Products, 2001, 13, 1-10.	5.2	125
4	Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Industrial Crops and Products, 2012, 36, 395-400.	5.2	119
5	Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass and Bioenergy, 2018, 109, 257-275.	5.7	116
6	Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 2013, 41, 299-305.	5.2	113
7	Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L Frontiers in Plant Science, 2016, 7, 1612.	3.6	104
8	Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Industrial Crops and Products, 2011, 33, 1-6.	5.2	88
9	Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: Chemical and fuel characterization. Industrial Crops and Products, 2018, 123, 262-270.	5.2	62
10	Stumps of Eucalyptus globulus as a Source of Antioxidant and Antimicrobial Polyphenols. Molecules, 2014, 19, 16428-16446.	3.8	61
11	Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Science and Technology, 2015, 49, 159-175.	3.2	54
12	Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Industrial Crops and Products, 2015, 74, 998-1007.	5.2	51
13	Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel, 2017, 206, 289-299.	6.4	51
14	Cellular structure and chemical composition of cork from the Chinese cork oak (Quercus variabilis). Journal of Wood Science, 2013, 59, 1-9.	1.9	50
15	Chemical characterization of different granulometric fractions of grape stalks waste. Industrial Crops and Products, 2013, 50, 494-500.	5.2	48
16	Chemical composition and kraft pulping potential of 12 eucalypt species. Industrial Crops and Products, 2015, 66, 89-95.	5.2	48
17	Characterization of hairs and pappi from Cynara cardunculus capitula and their suitability for paper production. Industrial Crops and Products, 2009, 29, 116-125.	5.2	47
18	Study of thermochemical treatments of cork in the 150–400°C range using colour analysis and FTIR spectroscopy. Industrial Crops and Products, 2012, 38, 132-138.	5.2	47

#	Article	IF	CITATIONS
19	Response surface modeling and optimization of biodiesel production from <i>Cynara cardunculus</i> oil. European Journal of Lipid Science and Technology, 2010, 112, 310-320.	1.5	46
20	Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiology, 2019, 180, 1310-1321.	4.8	43
21	Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products, 2012, 39, 12-16.	5.2	42
22	The influence of heartwood on the pulping properties of Acacia melanoxylon wood. Journal of Wood Science, 2008, 54, 464-469.	1.9	41
23	Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Industrial Crops and Products, 2013, 50, 166-175.	5.2	41
24	Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/FID. Bioresource Technology, 2012, 123, 296-302.	9.6	36
25	Characterization of Cynara cardunculus L. stalks and their suitability for biogas production. Industrial Crops and Products, 2012, 40, 318-323.	5.2	36
26	Chemical characterization of cork and phloem from Douglas fir outer bark. Holzforschung, 2016, 70, 475-483.	1.9	34
27	An integrated characterization of Picea abies industrial bark regarding chemical composition, thermal properties and polar extracts activity. PLoS ONE, 2018, 13, e0208270.	2.5	34
28	Lignin from Tree Barks: Chemical Structure and Valorization. ChemSusChem, 2020, 13, 4537-4547.	6.8	33
29	Title is missing!. Molecular Breeding, 2003, 12, 157-167.	2.1	31
30	Screening of the Antioxidant and Enzyme Inhibition Potentials of Portuguese Pimpinella anisum L. Seeds by GC-MS. Food Analytical Methods, 2018, 11, 2645-2656.	2.6	31
31	Variation of Lignin Monomeric Composition During Kraft Pulping of <i>Eucalyptus globulus</i> Heartwood and Sapwood. Journal of Wood Chemistry and Technology, 2013, 33, 1-18.	1.7	28
32	The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research, 2006, 36, 2675-2683.	1.7	27
33	Variability in oil content and composition and storage stability of seeds from Jatropha curcas L. grown in Mozambique. Industrial Crops and Products, 2013, 50, 828-837.	5.2	27
34	Pulping Yield and Delignification Kinetics of Heartwood and Sapwood of Maritime Pine. Journal of Wood Chemistry and Technology, 2005, 25, 217-230.	1.7	26
35	Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Science and Technology, 2020, 54, 559-585.	3.2	26
36	Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass and Bioenergy, 2015, 76, 86-95.	5.7	24

#	Article	IF	CITATIONS
37	Variation of heartwood and sapwood in 18-year-old Eucalyptus globulus trees grown with different spacings. Trees - Structure and Function, 2009, 23, 367-372.	1.9	22
38	Modeling and Optimization of Eucalyptus globulus Bark and Wood Delignification using Response Surface Methodology. BioResources, 2014, 9, .	1.0	22
39	Steam Explosion as a Pretreatment of <i>Cynara cardunculus</i> Prior to Delignification. Industrial & Engineering Chemistry Research, 2017, 56, 424-433.	3.7	22
40	Production of low-calorie structured lipids from spent coffee grounds or olive pomace crude oils catalyzed by immobilized lipase in magnetic nanoparticles. Bioresource Technology, 2020, 307, 123223.	9.6	22
41	Effect of Rice Husk Torrefaction on Syngas Production and Quality. Energy & Fuels, 2017, 31, 5183-5192.	5.1	20
42	Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers, 2020, 12, 2831.	4.5	20
43	Thermal Conversion of Cynara cardunculus L. and Mixtures with Eucalyptus globulus by Fluidized-Bed Combustion and Gasification. Energy & Fuels, 2013, 27, 6725-6737.	5.1	19
44	Modeling and optimization of laboratory-scale conditioning of Jatropha curcas L. seeds for oil expression. Industrial Crops and Products, 2016, 83, 614-619.	5.2	19
45	Eucalyptus globulus Stumpwood as a Raw Material for Pulping. BioResources, 2014, 9, .	1.0	19
46	Py-GC/MS(FID) assessed behavior of polysaccharides during kraft delignification of Eucalyptus globulus heartwood and sapwood. Journal of Analytical and Applied Pyrolysis, 2013, 101, 142-149.	5.5	18
47	Storage stability of Jatropha curcas L. oil naturally rich in gamma-tocopherol. Industrial Crops and Products, 2015, 64, 188-193.	5.2	18
48	The Potential of Hydrothermally Pretreated Industrial Barks From <i>E. globulus</i> as a Feedstock for Pulp Production. Journal of Wood Chemistry and Technology, 2016, 36, 383-392.	1.7	18
49	Comparison of Py-GC/FID and Wet Chemistry Analysis for Lignin Determination in Wood and Pulps from Eucalyptus globulus. BioResources, 2013, 8, .	1.0	16
50	Range analysis of Eucalyptus globulus bark low-temperature hydrothermal treatment to produce a new component for growing media industry. Waste Management, 2018, 79, 1-7.	7.4	16
51	Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues. Waste and Biomass Valorization, 2021, 12, 303-311.	3.4	16
52	ANATOMICAL CHARACTERISATION AND VARIABILITY OF THE THISTLE CYNARA CARDUNCULUS IN VIEW OF PULPING POTENTIAL. IAWA Journal, 2004, 25, 217-230.	2.7	15
53	Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Industrial Crops and Products, 2016, 91, 97-103.	5.2	15
54	Influence of raw-material and process variables in the kraft pulping of Cynara cardunculus L Industrial Crops and Products, 2006, 24, 160-165.	5.2	14

#	Article	IF	CITATIONS
55	Optimization of ethanol-alkali delignification of false banana (Ensete ventricosum) fibers for pulp production using response surface methodology. Industrial Crops and Products, 2018, 126, 426-433.	5.2	14
56	Structural changes in lignin of thermally treated eucalyptus wood. Journal of Wood Chemistry and Technology, 2020, 40, 258-268.	1.7	14
57	Isolation and Structural Characterization of Lignin from Cardoon (Cynara cardunculus L.) Stalks. Bioenergy Research, 2015, 8, 1946-1955.	3.9	13
58	Aged Acacia melanoxylon bark as an organic peat replacement in container media. Journal of Cleaner Production, 2019, 232, 1103-1111.	9.3	13
59	The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresource Technology Reports, 2019, 6, 89-95.	2.7	13
60	Effect of Minimizing d-Limonene Compound on Anaerobic Co-digestion Feeding Mixtures to Improve Methane Yield. Waste and Biomass Valorization, 2019, 10, 75-83.	3.4	13
61	An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry, 2020, 180, 112520.	2.9	13
62	Fractionation and valorization of industrial bark residues by autohydrolysis and enzymatic saccharification. Bioresource Technology Reports, 2020, 11, 100441.	2.7	13
63	ECB12: 12th European Congess on Biotechnology. Journal of Biotechnology, 2005, 118, 1-189.	3.8	11
64	Modeling of sapwood and heartwood delignification kinetics of Eucalyptus globulus using consecutive and simultaneous approaches. Journal of Wood Science, 2011, 57, 20-26.	1.9	11
65	Water-energy nexus: Anaerobic co-digestion with elephant grass hydrolyzate. Journal of Environmental Management, 2016, 181, 48-53.	7.8	11
66	Chemical effects of a mild torrefaction on the wood of eight <i>Eucalyptus</i> species. Holzforschung, 2017, 71, 291-298.	1.9	11
67	Chemical Characterization of Lignocellulosic Materials by Analytical Pyrolysis. , 0, , .		11
68	Cynara cardunculus as a Multiuse Crop. Compendium of Plant Genomes, 2019, , 65-98.	0.5	11
69	Bio-Refinery Potential of Enset/Ensete ventricosum/Fiber Bundle Using Non-catalyzed and Alkali Catalyzed Hydrothermal Pretreatment. Waste and Biomass Valorization, 2021, 12, 663-672.	3.4	11
70	Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste and Biomass Valorization, 2021, 12, 1253-1265.	3.4	11
71	Strength properties and dimensional stability of particleboards with different proportions of thermally treated recycled pine particles. Holzforschung, 2016, 70, 467-474.	1.9	10
72	Pattern recognition of cardoon oil from different large-scale field trials. Industrial Crops and Products, 2018, 118, 236-245.	5.2	10

#	Article	IF	CITATIONS
73	Pattern recognition as a tool to discriminate softwood and hardwood bark fractions with different particle size. Wood Science and Technology, 2014, 48, 1197-1211.	3.2	9
74	Fractioning of bark of Pinus pinea by milling and chemical characterization of the different fractions. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	9
75	Low-temperature hydrothermally treated Eucalyptus globulus bark: From by-product to horticultural fiber-based growing media viability. Journal of Cleaner Production, 2021, 319, 128805.	9.3	9
76	Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests, 2021, 12, 1400.	2.1	9
77	Variation of Wood Pulping and Bleached Pulp Properties Along the Stem in Mature Eucalyptus globulus Trees. BioResources, 2015, 10, .	1.0	8
78	Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forests, 2020, 11, 1272.	2.1	8
79	Towards sustainable valorisation of Acacia melanoxylon biomass: Characterization of mature and juvenile plant tissues. Environmental Research, 2020, 191, 110090.	7.5	8
80	Heartwood, sapwood and bark variation in coppiced <i>Eucalyptus globulus</i> trees in 2nd rotation and comparison with the single-stem 1st rotation. Silva Fennica, 2015, 49, .	1.3	8
81	Insights into the Bioactivities and Chemical Analysis of Ailanthus altissima (Mill.) Swingle. Applied Sciences (Switzerland), 2021, 11, 11331.	2.5	8
82	Integrated bioprocess for structured lipids, emulsifiers and biodiesel production using crude acidic olive pomace oils. Bioresource Technology, 2022, 346, 126646.	9.6	7
83	Quality of Pinus sp. pellets with kraft lignin and starch addition. Scientific Reports, 2021, 11, 900.	3.3	6
84	The effect of eucalypt tree overaging on pulping and paper properties. European Journal of Wood and Wood Products, 2016, 74, 101-108.	2.9	5
85	Characterisation of the Phenolic Profile of Acacia retinodes and Acacia mearnsii Flowers' Extracts. Plants, 2022, 11, 1442.	3.5	5
86	Family effects in heartwood content of Eucalyptus globulus L European Journal of Forest Research, 2014, 133, 81-87.	2.5	4
87	The Identification of New Triterpenoids in Eucalyptus globulus Wood. Molecules, 2021, 26, 3495.	3.8	4
88	Radial and Axial Variation of Heartwood Properties and Extractives in Mature Trees of Eucalyptus globulus. BioResources, 2014, 10, .	1.0	3
89	Potential Applications of the Cytisus Shrub Species: Cytisus multiflorus, Cytisus scoparius, and Cytisus striatus. Processes, 2022, 10, 1287.	2.8	3
90	Early growth of invasive acacias as a potential biomass-for-energy source under Mediterranean conditions. International Journal of Agricultural Resources, Governance and Ecology, 2016, 12, 155.	0.0	2

#	Article	IF	CITATIONS
91	The Acacia bark phytotoxic potential: a non-synthetic bio-herbicide. Acta Horticulturae, 2021, , 103-108.	0.2	1
92	The effect of refining in the fibre structure and properties in unbleached eucalypt pulps. , 1995, , 529-534.		0
93	Green application for an industrial by-product: aged <i>Eucalyptus globulus</i> bark-based substrates. Acta Horticulturae, 2021, , 325-332.	0.2	0
94	Energetic characterization and radiographic analysis of torrefied coated MDF residues. Scientific Reports, 2021, 11, 4899.	3.3	0
95	Hydrothermally treated Eucalyptus globulus bark: an innovative organic material for plant substrates. Acta Horticulturae, 2019, , 207-214.	0.2	0