Alessandro Vespignani

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/8817792/aless and ro-vespignani-publications-by-citations.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

206 43,088 274 95 h-index g-index citations papers 302 51,234 9.1 7.93 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
274	Epidemic spreading in scale-free networks. <i>Physical Review Letters</i> , 2001 , 86, 3200-3	7.4	3811
273	The architecture of complex weighted networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 3747-52	11.5	2401
272	The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. <i>Science</i> , 2020 , 368, 395-400	33.3	1798
271	Epidemic processes in complex networks. <i>Reviews of Modern Physics</i> , 2015 , 87, 925-979	40.5	1761
270	Big data. The parable of Google Flu: traps in big data analysis. <i>Science</i> , 2014 , 343, 1203-5	33.3	1434
269	The effect of human mobility and control measures on the COVID-19 epidemic in China. <i>Science</i> , 2020 , 368, 493-497	33.3	1373
268	Dynamical Processes on Complex Networks 2008,		1362
267	Epidemic dynamics and endemic states in complex networks. <i>Physical Review E</i> , 2001 , 63, 066117	2.4	1041
266	Dynamical and correlation properties of the internet. <i>Physical Review Letters</i> , 2001 , 87, 258701	7.4	964
265	Multiscale mobility networks and the spatial spreading of infectious diseases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 21484-9	11.5	821
264	The role of the airline transportation network in the prediction and predictability of global epidemics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 2015-20	11.5	749
263	Immunization of complex networks. <i>Physical Review E</i> , 2002 , 65, 036104	2.4	701
262	Evolution and Structure of the Internet: A Statistical Physics Approach 2004 ,		663
261	Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. <i>Science</i> , 2020 , 368, 1481-1486	33.3	610
2 60	Detecting rich-club ordering in complex networks. <i>Nature Physics</i> , 2006 , 2, 110-115	16.2	603
259	Economic networks: the new challenges. <i>Science</i> , 2009 , 325, 422-5	33.3	537
258	Reaction diffusion processes and metapopulation models in heterogeneous networks. <i>Nature Physics</i> , 2007 , 3, 276-282	16.2	500

(2005-2003)

257	Global protein function prediction from protein-protein interaction networks. <i>Nature Biotechnology</i> , 2003 , 21, 697-700	44.5	494
256	Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. <i>Physical Review Letters</i> , 2004 , 92, 178701	7.4	483
255	Dynamics of person-to-person interactions from distributed RFID sensor networks. <i>PLoS ONE</i> , 2010 , 5, e11596	3.7	473
254	Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. <i>PLoS Medicine</i> , 2007 , 4, e13	11.6	458
253	Large-scale topological and dynamical properties of the Internet. <i>Physical Review E</i> , 2002 , 65, 066130	2.4	454
252	Epidemic dynamics in finite size scale-free networks. <i>Physical Review E</i> , 2002 , 65, 035108	2.4	451
251	Modelling dynamical processes in complex socio-technical systems. <i>Nature Physics</i> , 2012 , 8, 32-39	16.2	429
250	Weighted evolving networks: coupling topology and weight dynamics. <i>Physical Review Letters</i> , 2004 , 92, 228701	7.4	423
249	Intermittent dislocation flow in viscoplastic deformation. <i>Nature</i> , 2001 , 410, 667-71	50.4	423
248	Extracting the multiscale backbone of complex weighted networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 6483-8	11.5	416
247	Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. <i>Lancet Infectious Diseases, The</i> , 2020 , 20, 793-802	25.5	394
246	Absence of epidemic threshold in scale-free networks with degree correlations. <i>Physical Review Letters</i> , 2003 , 90, 028701	7.4	379
245	Science of science. Science, 2018, 359,	33.3	373
244	Predicting the behavior of techno-social systems. <i>Science</i> , 2009 , 325, 425-8	33.3	335
243	Digital epidemiology. <i>PLoS Computational Biology</i> , 2012 , 8, e1002616	5	334
242	Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. <i>Nature Human Behaviour</i> , 2020 , 4, 964-971	12.8	333
241	Modeling users' activity on twitter networks: validation of Dunbar's number. PLoS ONE, 2011 , 6, e22656	3.7	324
240	Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. <i>Journal of Theoretical Biology</i> , 2005 , 235, 275-88	2.3	320

239	Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. <i>PLoS ONE</i> , 2011 , 6, e16591	3.7	313
238	Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. <i>Journal of Theoretical Biology</i> , 2008 , 251, 450-67	2.3	304
237	Modeling of Protein Interaction Networks. <i>Complexus</i> , 2003 , 1, 38-44		298
236	Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model. <i>Journal of Computational Science</i> , 2010 , 1, 132-145	3.4	275
235	Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. <i>BMC Medicine</i> , 2009 , 7, 45	11.4	248
234	Cut-offs and finite size effects in scale-free networks. <i>European Physical Journal B</i> , 2004 , 38, 205-209	1.2	244
233	Modeling human mobility responses to the large-scale spreading of infectious diseases. <i>Scientific Reports</i> , 2011 , 1, 62	4.9	233
232	Characterization and modeling of weighted networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 346, 34-43	3.3	225
231	Nonequilibrium phase transition in a model for social influence. <i>Physical Review Letters</i> , 2000 , 85, 3536	-97.4	225
230	Paths to self-organized criticality. Brazilian Journal of Physics, 2000, 30, 27-41	1.2	213
229	Diffusion of scientific credits and the ranking of scientists. <i>Physical Review E</i> , 2009 , 80, 056103	2.4	209
228	Invasion threshold in heterogeneous metapopulation networks. <i>Physical Review Letters</i> , 2007 , 99, 1487	′0 / 1.4	209
227	Assessing the international spreading risk associated with the 2014 west african ebola outbreak. <i>PLOS Currents</i> , 2014 , 6,		208
226	Spread of Zika virus in the Americas. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E4334-E4343	11.5	194
225	Experimental evidence for critical dynamics in microfracturing processes. <i>Physical Review Letters</i> , 1994 , 73, 3423-3426	7.4	194
224	First-Order Transition in the Breakdown of Disordered Media. <i>Physical Review Letters</i> , 1997 , 78, 1408-1	4 7 .4	187
223	Modeling the evolution of weighted networks. <i>Physical Review E</i> , 2004 , 70, 066149	2.4	182
222	Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. <i>Lancet Infectious Diseases, The,</i> 2015 , 15, 204-11	25.5	180

221	Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. <i>BMC Medicine</i> , 2012 , 10, 165	11.4	178
220	Plasticity and avalanche behaviour in microfracturing phenomena. <i>Nature</i> , 1997 , 388, 658-660	50.4	177
219	Network science. Annual Review of Information Science & Technology, 2007, 41, 537-607		173
218	Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. <i>Science</i> , 2021 , 371,	33.3	173
217	How self-organized criticality works: A unified mean-field picture. <i>Physical Review E</i> , 1998 , 57, 6345-636	22.4	169
216	Universality class of absorbing phase transitions with a conserved field. <i>Physical Review Letters</i> , 2000 , 85, 1803-6	7.4	166
215	Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. <i>BMC Infectious Diseases</i> , 2010 , 10, 190	4	163
214	Characterizing and modeling the dynamics of online popularity. <i>Physical Review Letters</i> , 2010 , 105, 1587	'9 14	160
213	Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 293, 297-304	3.3	158
212	The Structure of Interurban Traffic: A Weighted Network Analysis. <i>Environment and Planning B: Planning and Design</i> , 2007 , 34, 905-924		155
211	Incomplete ordering of the voter model on small-world networks. Europhysics Letters, 2003, 63, 153-158	81.6	150
210	Towards a characterization of behavior-disease models. <i>PLoS ONE</i> , 2011 , 6, e23084	3.7	149
209	The Twitter of Babel: mapping world languages through microblogging platforms. <i>PLoS ONE</i> , 2013 , 8, e61981	3.7	148
208	Phase transitions in contagion processes mediated by recurrent mobility patterns. <i>Nature Physics</i> , 2011 , 7, 581-586	16.2	147
207	Time varying networks and the weakness of strong ties. Scientific Reports, 2014, 4, 4001	4.9	143
206	Self-organized criticality as an absorbing-state phase transition. <i>Physical Review E</i> , 1998 , 57, 5095-5105	2.4	143
205	Avalanche and spreading exponents in systems with absorbing states. <i>Physical Review E</i> , 1999 , 59, 6175	-9 .4	141
204	Big Data for Infectious Disease Surveillance and Modeling. <i>Journal of Infectious Diseases</i> , 2016 , 214, S37	5 7 S379	9138

203	Absorbing-state phase transitions in fixed-energy sandpiles. <i>Physical Review E</i> , 2000 , 62, 4564-82	2.4	138
202	Critical load and congestion instabilities in scale-free networks. <i>Europhysics Letters</i> , 2003 , 62, 292-298	1.6	137
201	Driving, Conservation, and Absorbing States in Sandpiles. <i>Physical Review Letters</i> , 1998 , 81, 5676-5679	7.4	135
2 00	Random walks and search in time-varying networks. <i>Physical Review Letters</i> , 2012 , 109, 238701	7.4	133
199	The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. <i>BMC Infectious Diseases</i> , 2011 , 11, 37	4	131
198	Patterns of dominant flows in the world trade web. <i>Journal of Economic Interaction and Coordination</i> , 2007 , 2, 111-124	1.1	126
197	Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. <i>BMC Medicine</i> , 2007 , 5, 34	11.4	124
196	Measurability of the epidemic reproduction number in data-driven contact networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12680-12685	11.5	124
195	Controlling contagion processes in activity driven networks. <i>Physical Review Letters</i> , 2014 , 112, 118702	7.4	122
194	K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. <i>Networks and Heterogeneous Media</i> , 2008 , 3, 371-393	1.6	122
193	Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread. <i>PLoS Computational Biology</i> , 2012 , 8, e1002673	5	121
192	Renormalization scheme for self-organized criticality in sandpile models. <i>Physical Review Letters</i> , 1994 , 72, 1690-1693	7.4	118
191	Dislocation jamming and andrade creep. <i>Physical Review Letters</i> , 2002 , 89, 165501	7.4	113
190	Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge. <i>BMC Infectious Diseases</i> , 2016 , 16, 357	4	109
189	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. <i>Epidemics</i> , 2018 , 22, 13-21	5.1	106
188	The fixed-scale transformation approach to fractal growth. <i>Reviews of Modern Physics</i> , 1995 , 67, 545-60	4 40.5	105
187	Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. <i>Clinical Microbiology and Infection</i> , 2014 , 20, 17-21	9.5	104
186	Algorithmic detection of semantic similarity 2005 ,		104

(2006-2005)

185	Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. <i>Complexity</i> , 2005 , 10, 57-67	1.6	100
184	A multi-source dataset of urban life in the city of Milan and the Province of Trentino. <i>Scientific Data</i> , 2015 , 2, 150055	8.2	97
183	Epidemic Spreading in Complex Networks with Degree Correlations. <i>Lecture Notes in Physics</i> , 2003 , 127	-15487	97
182	Enhancing disease surveillance with novel data streams: challenges and opportunities. <i>EPJ Data Science</i> , 2015 , 4,	3.4	96
181	The effects of spatial constraints on the evolution of weighted complex networks. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2005 , 2005, P05003	1.9	96
180	Modelling COVID-19. <i>Nature Reviews Physics</i> , 2020 , 1-3	23.6	91
179	Order Parameter and Scaling Fields in Self-Organized Criticality. <i>Physical Review Letters</i> , 1997 , 78, 4793	- 4 7496	91
178	The modeling of global epidemics: stochastic dynamics and predictability. <i>Bulletin of Mathematical Biology</i> , 2006 , 68, 1893-921	2.1	89
177	Efficiency and reliability of epidemic data dissemination in complex networks. <i>Physical Review E</i> , 2004 , 69, 055101	2.4	89
176	Avalanches in breakdown and fracture processes. <i>Physical Review E</i> , 1999 , 59, 5049-57	2.4	89
175	The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak 2020 ,		87
174	Computational social science: Obstacles and opportunities. <i>Science</i> , 2020 , 369, 1060-1062	33.3	81
173	Universality in sandpiles. <i>Physical Review E</i> , 1999 , 59, R12-R15	2.4	77
172	Renormalization approach to the self-organized critical behavior of sandpile models. <i>Physical Review E</i> , 1995 , 51, 1711-1724	2.4	76
171	Links that speak: the global language network and its association with global fame. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E5616-22	11.5	72
170	Online social networks and offline protest. <i>EPJ Data Science</i> , 2015 , 4,	3.4	71
169	Vulnerability of weighted networks. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2006 , 2006, P04006-P04006	1.9	69
168	Topical interests and the mitigation of search engine bias. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12684-9	11.5	69

167	Inferring high-resolution human mixing patterns for disease modeling. <i>Nature Communications</i> , 2021 , 12, 323	17.4	69
166	Critical behavior of a one-dimensional fixed-energy stochastic sandpile. <i>Physical Review E</i> , 2001 , 64, 050	61 204	65
165	Results from the second year of a collaborative effort to forecast influenza seasons in the United States. <i>Epidemics</i> , 2018 , 24, 26-33	5.1	63
164	WiFi networks and malware epidemiology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 1318-23	11.5	63
163	Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic 2020 ,		63
162	Topology and correlations in structured scale-free networks. <i>Physical Review E</i> , 2003 , 67, 046111	2.4	61
161	Exploring networks with traceroute-like probes: Theory and simulations. <i>Theoretical Computer Science</i> , 2006 , 355, 6-24	1.1	60
160	Field theory of absorbing phase transitions with a nondiffusive conserved field. <i>Physical Review E</i> , 2000 , 62, R5875-8	2.4	58
159	Opinion: Mathematical models: a key tool for outbreak response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18095-6	11.5	56
158	Structure of cycles and local ordering in complex networks. European Physical Journal B, 2004, 38, 183-	1862	56
157	Characterization and modeling of protein protein interaction networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 352, 1-27	3.3	56
156	The dynamics of information-driven coordination phenomena: A transfer entropy analysis. <i>Science Advances</i> , 2016 , 2, e1501158	14.3	54
155	Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. <i>Nature Communications</i> , 2021 , 12, 1533	17.4	53
154	Collaborative efforts to forecast seasonal influenza in the United States, 2015-2016. <i>Scientific Reports</i> , 2019 , 9, 683	4.9	51
153	Invasion threshold in structured populations with recurrent mobility patterns. <i>Journal of Theoretical Biology</i> , 2012 , 293, 87-100	2.3	50
152	Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios - United States, April-September 2021. <i>Morbidity and Mortality Weekly Report</i> , 2021 , 70, 719-724	31.7	50
151	Renormalization group approach to the critical behavior of the forest-fire model. <i>Physical Review Letters</i> , 1995 , 75, 465-468	7.4	49
150	Complexity in dislocation dynamics: experiments. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 309-310, 360-364	5.3	48

149	Resilience management during large-scale epidemic outbreaks. <i>Scientific Reports</i> , 2018 , 8, 1859	4.9	46
148	Algorithmic Computation and Approximation of Semantic Similarity. World Wide Web, 2006, 9, 431-456	2.9	45
147	An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time. <i>Science Advances</i> , 2021 , 7,	14.3	44
146	Epidemic modeling in complex realities. <i>Comptes Rendus - Biologies</i> , 2007 , 330, 364-74	1.4	42
145	Containing Ebola at the Source with Ring Vaccination. <i>PLoS Neglected Tropical Diseases</i> , 2016 , 10, e0005	50,983	42
144	Simulations for designing and interpreting intervention trials in infectious diseases. <i>BMC Medicine</i> , 2017 , 15, 223	11.4	41
143	Beating the news using social media: the case study of American Idol. EPJ Data Science, 2012, 1,	3.4	41
142	Epidemics and immunization in scale-free networks 2004 , 111-130		41
141	Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. <i>Science</i> , 2021 , 373, 889-89	95 ₃ 3.3	41
140	Ranking web sites with real user traffic 2008,		40
139	Complexity in dislocation dynamics: model. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 309-310, 324-327	5.3	38
138	Decoding the structure of the WWW. ACM Transactions on the Web, 2007, 1, 10	3.2	36
137	Comparative cost-effectiveness of SARS-CoV-2 testing strategies in the USA: a modelling study. Lancet Public Health, The, 2021 , 6, e184-e191	22.4	35
136	Host mobility drives pathogen competition in spatially structured populations. <i>PLoS Computational Biology</i> , 2013 , 9, e1003169	5	34
135	Forecasting Seasonal Influenza Fusing Digital Indicators and a Mechanistic Disease Model 2017,		33
134	The workshop on internet topology (wit) report. Computer Communication Review, 2007, 37, 69-73	1.4	33
133	Ebola: mobility data. <i>Science</i> , 2014 , 346, 433	33.3	31
132	The representativeness of a European multi-center network for influenza-like-illness participatory surveillance. <i>BMC Public Health</i> , 2014 , 14, 984	4.1	31

131	Citation Networks. <i>Understanding Complex Systems</i> , 2012 , 233-257	0.4	31
130	Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile. <i>Nature Communications</i> , 2021 , 12, 2429	17.4	31
129	The future of influenza forecasts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2802-2804	11.5	30
128	Universality classes in directed sandpile models. <i>Journal of Physics A</i> , 2000 , 33, L33-L39		30
127	Characterizing scientific production and consumption in physics. Scientific Reports, 2013, 3, 1640	4.9	29
126	Persistence of screening and self-criticality in the scale invariant dynamics of diffusion limited aggregation. <i>Physical Review Letters</i> , 1993 , 70, 3939-3942	7.4	29
125	Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative Approaches. <i>JMIR Public Health and Surveillance</i> , 2017 , 3, e83	11.4	29
124	Early Insights from Statistical and Mathematical Modeling of Key Epidemiologic Parameters of COVID-19. <i>Emerging Infectious Diseases</i> , 2020 , 26, e1-e14	10.2	29
123	Age profile of susceptibility, mixing, and social distancing shape the dynamics of the novel coronavirus disease 2019 outbreak in China 2020 ,		29
122	Integrating explanation and prediction in computational social science. <i>Nature</i> , 2021 , 595, 181-188	50.4	29
121	Mean-field behavior of the sandpile model below the upper critical dimension. <i>Physical Review E</i> , 1998 , 57, R6241-R6244	2.4	28
120	Assessing the spread of COVID-19 in Brazil: Mobility, morbidity and social vulnerability. <i>PLoS ONE</i> , 2020 , 15, e0238214	3.7	28
119	Assessing the ecotoxicologic hazards of a pandemic influenza medical response. <i>Environmental Health Perspectives</i> , 2011 , 119, 1084-90	8.4	27
118	Critical exponents in stochastic sandpile models. <i>Computer Physics Communications</i> , 1999 , 121-122, 299	-3402	27
117	Crosscut Analysis of Large Radial DLA: Departures from Self-Similarity and Lacunarity Effects. <i>Europhysics Letters</i> , 1995 , 32, 199-204	1.6	27
116	Local Rigidity and Self-Organized Criticality for Avalanches. <i>Europhysics Letters</i> , 1995 , 29, 111-116	1.6	27
115	Renormalization of Nonequilibrium Systems with Critical Stationary States. <i>Physical Review Letters</i> , 1996 , 77, 4560-4563	7.4	26
114	The effect of human mobility and control measures on the COVID-19 epidemic in China 2020 ,		26

113	Estimating the Cumulative Incidence of COVID-19 in the United States Using Four Complementary Approaches 2020 ,		26	
112	Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation. <i>Scientific Reports</i> , 2016 , 6, 35724	4.9	25	
111	Containing the accidental laboratory escape of potential pandemic influenza viruses. <i>BMC Medicine</i> , 2013 , 11, 252	11.4	25	
110	Energy Constrained Sandpile Models. <i>Physical Review Letters</i> , 1998 , 80, 4217-4220	7.4	25	
109	Determinants of follow-up participation in the Internet-based European influenza surveillance platform Influenzanet. <i>Journal of Medical Internet Research</i> , 2014 , 16, e78	7.6	25	
108	Detecting global bridges in networks. <i>Journal of Complex Networks</i> , 2016 , 4, 319-329	1.7	24	
107	Deviations from Self-Similarity in Plane DLA and the Infinite DriftIScenario. <i>Europhysics Letters</i> , 1995 , 29, 599-604	1.6	24	
106	Evolving epidemiology of novel coronavirus diseases 2019 and possible interruption of local transmission outside Hubei Province in China: a descriptive and modeling study 2020 ,		24	
105	Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China 2020 ,		23	
104	Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. <i>BMC Medicine</i> , 2016 , 14, 130	11.4	22	
103	Google Flu Trends Still Appears Sick: An Evaluation of the 2013-2014 Flu Season. SSRN Electronic Journal, 2014 ,	1	22	
102	Critical behavior and conservation in directed sandpiles. <i>Physical Review E</i> , 2000 , 62, 6195-205	2.4	22	
101	Association between recruitment methods and attrition in Internet-based studies. <i>PLoS ONE</i> , 2014 , 9, e114925	3.7	22	
100	Characterising two-pathogen competition in spatially structured environments. <i>Scientific Reports</i> , 2015 , 5, 7895	4.9	20	
99	Statistical theory of Internet exploration. <i>Physical Review E</i> , 2005 , 71, 036135	2.4	20	
98	Parallel diffusion-limited aggregation. <i>Physical Review E</i> , 1995 , 52, 5602-5609	2.4	20	
97	Fractal and topological properties of directed fractures. <i>Physical Review E</i> , 1994 , 49, 2673-2679	2.4	20	
96	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US		20	

95	The impact of relaxing interventions on human contact patterns and SARS-CoV-2 transmission in China. <i>Science Advances</i> , 2021 , 7,	14.3	20
94	Detecting critical slowing down in high-dimensional epidemiological systems. <i>PLoS Computational Biology</i> , 2020 , 16, e1007679	5	19
93	Short-period attractors and non-ergodic behavior in the deterministic fixed-energy sandpile model. <i>Europhysics Letters</i> , 2003 , 63, 512-518	1.6	19
92	Corrections to scaling in the forest-fire model. <i>Physical Review E</i> , 2000 , 61, 4854-9	2.4	19
91	The effect of eviction moratoria on the transmission of SARS-CoV-2. <i>Nature Communications</i> , 2021 , 12, 2274	17.4	19
90	Analysis of damage clusters in fracture processes. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 270, 57-62	3.3	18
89	Dynamically driven renormalization group. Journal of Statistical Physics, 1997, 88, 47-79	1.5	17
88	Real-Time Forecasting of the COVID-19 Outbreak in Chinese Provinces: Machine Learning Approach Using Novel Digital Data and Estimates From Mechanistic Models. <i>Journal of Medical Internet Research</i> , 2020 , 22, e20285	7.6	17
87	Ensemble forecast modeling for the design of COVID-19 vaccine efficacy trials. <i>Vaccine</i> , 2020 , 38, 7213	-72:16	17
86	Phase transitions in information spreading on structured populations. <i>Nature Physics</i> , 2020 , 16, 590-590	6 16.2	16
85	Twitter: big data opportunitiesresponse. <i>Science</i> , 2014 , 345, 148-9	33.3	16
84	On the lack of typical behavior in the global Web traffic network 2005 ,		16
83	Modeling the critical care demand and antibiotics resources needed during the Fall 2009 wave of influenza A(H1N1) pandemic. <i>PLOS Currents</i> , 2009 , 1, RRN1133		16
82	Social Data Mining and Seasonal Influenza Forecasts: The FluOutlook Platform. <i>Lecture Notes in Computer Science</i> , 2015 , 237-240	0.9	16
81	COVID-19 reopening strategies at the county level in the face of uncertainty: Multiple Models for Outbreak Decision Support 2020 ,		16
80	The infection tree of global epidemics. <i>Network Science</i> , 2014 , 2, 132-137	2.9	15
79	Traffic in Social Media II: Modeling Bursty Popularity 2010 ,		15
78	Human mobility and the worldwide impact of intentional localized highly pathogenic virus release. <i>Scientific Reports</i> , 2013 , 3, 810	4.9	14

(2009-2008)

77	Structural analysis of behavioral networks from the Internet. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2008 , 41, 224022	2	14	
76	Estimate of Novel Influenza A/H1N1 cases in Mexico at the early stage of the pandemic with a spatially structured epidemic model. <i>PLOS Currents</i> , 2009 , 1, RRN1129		14	
75	Association between COVID-19 outcomes and mask mandates, adherence, and attitudes. <i>PLoS ONE</i> , 2021 , 16, e0252315	3.7	14	
74	Give more data, awareness and control to individual citizens, and they will help COVID-19 containment. <i>Ethics and Information Technology</i> , 2021 , 1-6	3.7	14	
73	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e21	13561	1153	
7²	The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation. <i>Epidemics</i> , 2018 , 22, 3-12	5.1	12	
71	Modeling vaccination campaigns and the Fall/Winter 2009 activity of the new A(H1N1) influenza in the Northern Hemisphere. <i>Emerging Health Threats Journal</i> , 2009 , 2, e11		12	
70	Fixed scale transformation applied to diffusion limited aggregation and dielectric breakdown model in three dimensions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1991 , 173, 1-21	3.3	12	
69	Charting the Next Pandemic 2019 ,		12	
68	Renormalization scheme for forest-fire models. <i>Journal of Physics A</i> , 1996 , 29, 2981-3004		11	
67	Reaction-diffusion processes and epidemic metapopulation models in complex networks. <i>European Physical Journal B</i> , 2008 , 64, 349-353	1.2	11	
66	Universality of Growth Rules in Fractal Growth. <i>Europhysics Letters</i> , 1991 , 16, 417-422	1.6	11	
65	Mapping the physics research space: a machine learning approach. EPJ Data Science, 2019, 8,	3.4	11	
64	The COVID-19 outbreak in Sichuan, China: Epidemiology and impact of interventions. <i>PLoS Computational Biology</i> , 2020 , 16, e1008467	5	11	
63	Projected spread of Zika virus in the Americas		11	
62	Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2 2020 ,		11	
61	Preliminary results of models to predict areas in the Americas with increased likelihood of Zika virus transmission in 2017		10	
60	Modeling vaccination campaigns and the Fall/Winter 2009 activity of the new A(H1N1) influenza in the Northern Hemisphere. <i>Emerging Health Threats Journal</i> , 2009 , 2, 7093		9	

59	Comment on "self-organized criticality and absorbing states: lessons from the Ising model". <i>Physical Review E</i> , 2008 , 77, 048101; discussion 048102	2.4	9
58	Dynamical real space renormalization group applied to sandpile models. <i>Physical Review E</i> , 1999 , 60, 1239-51	2.4	9
57	Fluctuations and Correlations in Sandpile Models. <i>Physical Review Letters</i> , 1999 , 83, 1962-1965	7.4	9
56	Effect of empty configurations in the fixed scale transformation theory of fractal growth. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1990 , 168, 723-735	3.3	9
55	Complex dynamic networks: Tools and methods. <i>Computer Networks</i> , 2012 , 56, 967-969	5.4	8
54	THE ROLE OF GEOGRAPHY AND TRAFFIC IN THE STRUCTURE OF COMPLEX NETWORKS. International Journal of Modeling, Simulation, and Scientific Computing, 2007, 10, 5-28	0.8	8
53	Traffic-Driven Model of the World Wide Web Graph. Lecture Notes in Computer Science, 2004, 56-67	0.9	8
52	The effect of eviction moratoria on the transmission of SARS-CoV-2 2021 ,		8
51	Estimating the spreading and dominance of SARS-CoV-2 VOC 202012/01 (lineage B.1.1.7) across Europ	e	8
50	The flu fighters. <i>Physics World</i> , 2010 , 23, 26-30	0.5	7
50 49	The flu fighters. <i>Physics World</i> , 2010 , 23, 26-30 EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2007 , 17, 2491-2500	0.5	7
	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in		<u> </u>
49	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2491-2500 Estimating the establishment of local transmission and the cryptic phase of the COVID-19		7
49 48	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2491-2500 Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA 2020, Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual		7
49 48 47	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2491-2500 Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA 2020, Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches. PLoS Computational Biology,	2	7 7 7
49 48 47 46	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2491-2500 Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA 2020, Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches. PLoS Computational Biology, 2021, 17, e1008994 Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV	5	7 7 7
49 48 47 46 45	EPIDEMIC PREDICTABILITY IN META-POPULATION MODELS WITH HETEROGENEOUS COUPLINGS: THE IMPACT OF DISEASE PARAMETER VALUES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2491-2500 Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA 2020, Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches. PLoS Computational Biology, 2021, 17, e1008994 Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV epidemic. BMC Medicine, 2018, 16, 195 Traceroute-Like Exploration of Unknown Networks: A Statistical Analysis. Lecture Notes in Computer	5 11.4	7 7 7 7 7

(1995-2016)

41	The Biosurveillance Analytics Resource Directory (BARD): Facilitating the Use of Epidemiological Models for Infectious Disease Surveillance. <i>PLoS ONE</i> , 2016 , 11, e0146600	3.7	6
40	Topology, Hierarchy, and Correlations in Internet Graphs. Lecture Notes in Physics,425-440	0.8	6
39	The impact of relaxing interventions on human contact patterns and SARS-CoV-2 transmission in China 2020 ,		6
38	Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile		6
37	Damage detection via shortest-path network sampling. <i>Physical Review E</i> , 2014 , 89, 052816	2.4	5
36	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. <i>Nature</i> , 2021 , 600, 127-132	50.4	5
35	Assessing the potential impact of COVID-19 in Brazil: Mobility, Morbidity and the burden on the Health Care System		5
34	Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan area	iS	4
33	Association between COVID-19 Outcomes and Mask Mandates, Adherence, and Attitudes		4
32	Link transmission centrality in large-scale social networks. EPJ Data Science, 2018, 7,	3.4	4
31	Survey data and human computation for improved flu tracking. <i>Nature Communications</i> , 2021 , 12, 194	17.4	4
		±/· 4	
30	EPIDEMIC PREDICTIONS AND PREDICTABILITY IN COMPLEX ENVIRONMENTS. <i>Biophysical Reviews</i> and Letters, 2008 , 03, 217-226	1.2	3
30	, , ,		
	and Letters, 2008, 03, 217-226 Model-based evaluation of alternative reactive class closure strategies against COVID-19 Nature	1.2	3
29	And Letters, 2008, 03, 217-226 Model-based evaluation of alternative reactive class closure strategies against COVID-19 Nature Communications, 2022, 13, 322 Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the United	1.2	3
29	And Letters, 2008, 03, 217-226 Model-based evaluation of alternative reactive class closure strategies against COVID-19 Nature Communications, 2022, 13, 322 Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the United States: Comparative Evaluation. JMIR Public Health and Surveillance, 2019, 5, e13403 Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the	1.2	3
29 28 27	Model-based evaluation of alternative reactive class closure strategies against COVID-19 <i>Nature Communications</i> , 2022 , 13, 322 Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the United States: Comparative Evaluation. <i>JMIR Public Health and Surveillance</i> , 2019 , 5, e13403 Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination 2021 , Reply to Slater: Extracting the backbone of multiscale networks. <i>Proceedings of the National</i>	1.2 17.4 11.4	3 3

23	Preliminary modeling estimates of the relative transmissibility and immune escape of the Omicron SARS-CoV-2 variant of concern in South Africa		2
22	Real-Time Assessment of the International Spreading Risk Associated with the 2014 West African Ebola Outbreak 2016 , 39-56		2
21	Avalanches and Damage Clusters in Fracture Processes. Lecture Notes in Physics, 2001, 452-459	0.8	2
20	Social Networks, Contagion Processes and the Spreading of Infectious Diseases 2013 , 515-527		1
19	Fixed scale transformation for fracture growth processes governed by vectorial fields. <i>Physica A:</i> Statistical Mechanics and Its Applications, 1995 , 215, 223-232	3.3	1
18	Non-conservative character of the intersection of self-similar cascades. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1991 , 174, 425-437	3.3	1
17	Fixed scale transformation applied to cluster-cluster aggregation in two and three dimensions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 185, 202-210	3.3	1
16	Cost-effective proactive testing strategies during COVID-19 mass vaccination: A modelling study <i>The Lancet Regional Health Americas</i> , 2022 , 8, 100182		1
15	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave in Europe and the United States 2021 ,		1
14	Using heterogeneous data to identify signatures of dengue outbreaks at fine spatio-temporal scales across Brazil. <i>PLoS Neglected Tropical Diseases</i> , 2021 , 15, e0009392	4.8	1
13	Predicting seasonal influenza using supermarket retail records. <i>PLoS Computational Biology</i> , 2021 , 17, e1009087	5	1
12	Using simulated infectious disease outbreaks to inform site selection and sample size for individually randomized vaccine trials during an ongoing epidemic. <i>Clinical Trials</i> , 2021 , 18, 630-638	2.2	1
11	Impact of SARS-CoV-2 vaccination of children ages 5-11 years on COVID-19 disease burden and resilience to new variants in the United States, November 2021-March 2022: a multi-model study. 2022 ,		1
10	Anatomy of the first six months of COVID-19 vaccination campaign in Italy. <i>PLoS Computational Biology</i> , 2022 , 18, e1010146	5	O
9	Reply to Biersteker: When methods matter. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E1815	11.5	
8	Universality and Scale Invariant Dynamics in Laplacian Fractal Growth. <i>International Journal of Modern Physics B</i> , 1997 , 11, 3595-3619	1.1	
7	Sampling of Networks with Traceroute-Like Probes. <i>Complexus</i> , 2006 , 3, 83-96		
6	Zapperi et al. Reply:. <i>Physical Review Letters</i> , 1999 , 83, 1484-1484	7.4	

LIST OF PUBLICATIONS

5	Fixed scale transformation applied to fractal aggregation with levy flight particle trajectories. <i>Chaos, Solitons and Fractals</i> , 1995 , 6, 585-591	9.3
4	FIXED SCALE TRANSFORMATION APPROACH FOR BORN MODEL OF FRACTURES. <i>Fractals</i> , 1995 , 03, 829-837	3.2
3	Asymptotic screening in the scale invariant growth rules for Laplacian fractals. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 191, 128-133	3.3
2	Fixed Scale Transformation Approach to Fractal Growth in Three Dimensions 1990 , 308-309	

Modeling Contact and Mobility Based Social Response to the Spreading of Infectious Diseases **2013** , 103-123