List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides. Frontiers in Cell and Developmental Biology, 2022, 10, 875523.	1.8	1
2	Prospects of telomereâ€ŧoâ€ŧelomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnology Journal, 2022, 20, 1373-1386.	4.1	24
3	The non-Mendelian behavior of plant B chromosomes. Chromosome Research, 2022, 30, 229-239.	1.0	11
4	Highly reactive chemicals meet haploidization. Molecular Plant, 2022, , .	3.9	1
5	Rye B chromosomes differently influence the expression of A chromosome–encoded genes depending on the host species. Chromosome Research, 2022, 30, 335-349.	1.0	3
6	A protocol to expand plant nuclei. Methods in Cell Biology, 2021, 161, 197-216.	0.5	5
7	Engineered degradation of EYFP-tagged CENH3 via the 26S proteasome pathway in plants. PLoS ONE, 2021, 16, e0247015.	1.1	10
8	The Arabidopsis condensin CAPâ€Ð subunits arrange interphase chromatin. New Phytologist, 2021, 230, 972-987.	3.5	9
9	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	9.4	138
10	Identification of rye B chromosomeâ€associated peptides by mass spectrometry. New Phytologist, 2021, 230, 2179-2185.	3.5	6
11	Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA. Annals of Botany, 2021, 128, 835-848.	1.4	13
12	Highâ€ŧhroughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR TM. Plant Journal, 2021, 107, 649-661.	2.8	2
13	The Evolutionary Dynamics of Repetitive DNA and Its Impact on the Genome Diversification in the Genus Sorghum. Frontiers in Plant Science, 2021, 12, 729734.	1.7	4
14	A simple model explains the cell cycle-dependent assembly of centromeric nucleosomes in holocentric species. Nucleic Acids Research, 2021, 49, 9053-9065.	6.5	8
15	Expression of Two Rye CENH3 Variants and Their Loading into Centromeres. Plants, 2021, 10, 2043.	1.6	7
16	Application of CRISPR/Cas9 to visualize defined genomic sequences in fixed chromosomes and nuclei. , 2021, , 147-153.		1
17	The B Chromosome of Rye. Compendium of Plant Genomes, 2021, , 63-76.	0.3	0
18	Only the Rye Derived Part of the 1BL/1RS Hybrid Centromere Incorporates CENH3 of Wheat. Frontiers in Plant Science, 2021, 12, 802222.	1.7	10

#	Article	IF	CITATIONS
19	The H3 histone chaperone NASP ^{SIM3} escorts CenH3 in Arabidopsis. Plant Journal, 2020, 101, 71-86.	2.8	37
20	Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin. Frontiers in Plant Science, 2020, 10, 1799.	1.7	37
21	Two combinatorial patterns of telomere histone marks in plants with canonical and nonâ€canonical telomere repeats. Plant Journal, 2020, 102, 678-687.	2.8	18
22	Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Research, 2020, 28, 7-17.	1.0	25
23	European maize genomes highlight intraspecies variation in repeat and gene content. Nature Genetics, 2020, 52, 950-957.	9.4	84
24	Tissue-Specific Transcriptome Analysis Reveals Candidate Transcripts Associated with the Process of Programmed B Chromosome Elimination in Aegilops speltoides. International Journal of Molecular Sciences, 2020, 21, 7596.	1.8	5
25	Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nature Communications, 2020, 11, 4418.	5.8	82
26	Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Research, 2020, 28, 355-368.	1.0	24
27	Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres. Frontiers in Plant Science, 2020, 11, 1254.	1.7	17
28	DEFECTIVE ENDOSPERM-D1 (Dee-D1) is crucial for endosperm development in hexaploid wheat. Communications Biology, 2020, 3, 791.	2.0	3
29	Analysis of the small chromosomal Prionium serratum (Cyperid) demonstrates the importance of reliable methods to differentiate between mono- and holocentricity. Chromosoma, 2020, 129, 285-297.	1.0	7
30	Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. International Journal of Molecular Sciences, 2020, 21, 3488.	1.8	42
31	Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nature Communications, 2020, 11, 2764.	5.8	30
32	Analysis of Crossover Events and Allele Segregation Distortion in Interspecific Citrus Hybrids by Single Pollen Genotyping. Frontiers in Plant Science, 2020, 11, 615.	1.7	5
33	Application of Tris-HCl Allows the Specific Labeling of Regularly Prepared Chromosomes by CRISPR-FISH. Cytogenetic and Genome Research, 2020, 160, 156-165.	0.6	16
34	Functional Divergence of Microtubule-Associated TPX2 Family Members in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 2183.	1.8	17
35	Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA. Methods in Molecular Biology, 2020, 2166, 343-356.	0.4	4
36	Quantification of Recombination Rate and Segregation Distortion by Genotyping and Sequencing of Single Pollen Nuclei. Methods in Molecular Biology, 2020, 2061, 281-300.	0.4	1

#	Article	IF	CITATIONS
37	Analysis of Pollen Grains by Immunostaining and FISH in Triticeae Species. Methods in Molecular Biology, 2020, 2061, 347-358.	0.4	2
38	In Planta Delivery of Chemical Compounds into Barley Meiocytes: EdU as Compound Example. Methods in Molecular Biology, 2020, 2061, 381-402.	0.4	4
39	CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants, 2020, 6, 638-645.	4.7	104
40	Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Communications Biology, 2020, 3, 775.	2.0	20
41	<scp>IAPT</scp> chromosome data 33. Taxon, 2020, 69, 1394-1405.	0.4	4
42	Ultrastructure and Dynamics of Synaptonemal Complex Components During Meiotic Pairing and Synapsis of Standard (A) and Accessory (B) Rye Chromosomes. Frontiers in Plant Science, 2019, 10, 773.	1.7	22
43	Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. Frontiers in Plant Science, 2019, 10, 774.	1.7	28
44	CRISPR/Cas9-Based RGEN-ISL Allows the Simultaneous and Specific Visualization of Proteins, DNA Replication. Cytogenetic and Genome Research, 2019, 159, 48-53.	0.6	24
45	Assessing Ploidy Level Analysis and Single Pollen Genotyping of Diploid and Euploid Citrus Genotypes by Fluorescence-Activated Cell Sorting and Whole-Genome Amplification. Frontiers in Plant Science, 2019, 10, 1174.	1.7	6
46	Together But Different: The Subgenomes of the Bimodal Eleutherine Karyotypes Are Differentially Organized. Frontiers in Plant Science, 2019, 10, 1170.	1.7	17
47	Deregulated Phosphorylation of CENH3 at Ser65 Affects the Development of Floral Meristems in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 928.	1.7	8
48	The distribution of epigenetic histone marks differs between the X and Y chromosomes in Silene latifolia. Planta, 2019, 250, 487-494.	1.6	19
49	Nondisjunction and unequal spindle organization accompany the drive of <i>Aegilops speltoides</i> B chromosomes. New Phytologist, 2019, 223, 1340-1352.	3.5	26
50	<scp>RNA</scp> â€guided endonuclease – <i>inÂsitu</i> labelling (<scp>RGEN</scp> â€ <scp>ISL</scp>): a fast <scp>CRISPR</scp> /Cas9â€based method to label genomic sequences in various species. New Phytologist, 2019, 222, 1652-1661.	3 . 5	32
51	Evolution, Composition and Regulation of Supernumerary B Chromosomes. Genes, 2019, 10, 161.	1.0	20
52	Repetitive DNA landscape in essential A and supernumerary B chromosomes of Festuca pratensis Huds. Scientific Reports, 2019, 9, 19989.	1.6	9
53	Depletion of KNL2 Results in Altered Expression of Genes Involved in Regulation of the Cell Cycle, Transcription, and Development in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 5726.	1.8	6
54	State-of-the-art and novel developments of in vivo haploid technologies. Theoretical and Applied Genetics, 2019, 132, 593-605.	1.8	91

#	Article	IF	CITATIONS
55	Evolution of Plant B Chromosome Enriched Sequences. Genes, 2018, 9, 515.	1.0	25
56	Cytogenetics and Genetic Stocks for Physical Mapping and Sequencing. Compendium of Plant Genomes, 2018, , 25-44.	0.3	1
57	Decondensation of chromosomal 45S rDNA sites in Lolium and Festuca genotypes does not result in karyotype instability. Protoplasma, 2017, 254, 285-292.	1.0	11
58	Centromere location in <i>Arabidopsis</i> is unaltered by extreme divergence in CENH3 protein sequence. Genome Research, 2017, 27, 471-478.	2.4	58
59	Liveâ€cell <scp>CRISPR</scp> imaging in plants reveals dynamic telomere movements. Plant Journal, 2017, 91, 565-573.	2.8	114
60	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
61	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
62	Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A. Plant Reproduction, 2017, 30, 95-105.	1.3	14
63	Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes. Cytogenetic and Genome Research, 2017, 152, 90-96.	0.6	7
64	In Situ Hybridization to Plant Chromosomes. Springer Protocols, 2017, , 477-494.	0.1	12
65	Rye B chromosomes encode a functional Argonauteâ€like protein with <i>inÂvitro</i> slicer activities similar to its A chromosome paralog. New Phytologist, 2017, 213, 916-928.	3.5	51
66	Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma, 2017, 126, 325-335.	1.0	59
67	Conserved molecular structure of the centromeric histone CENH3 in Secale and its phylogenetic relationships. Scientific Reports, 2017, 7, 17628.	1.6	22
68	B Chromosomes – A Matter of Chromosome Drive. Frontiers in Plant Science, 2017, 08, 210.	1.7	68
69	Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes. Frontiers in Plant Science, 2017, 8, 1620.	1.7	46
70	How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes. Genes, 2017, 8, 294.	1.0	36
71	Chromatin Ring Formation at Plant Centromeres. Frontiers in Plant Science, 2016, 7, 28.	1.7	30
72	Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Frontiers in Plant Science, 2016, 7, 234.	1.7	31

#	Article	IF	CITATIONS
73	Sources of Stem Rust Resistance in Wheat-Alien Introgression Lines. Plant Disease, 2016, 100, 1101-1109.	0.7	38
74	Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray. Molecular Biology Reports, 2016, 43, 659-665.	1.0	8
75	Tissue-specific genome instability in synthetic interspecific hybrids of Pennisetum purpureum (Napier) Tj ETQq1 2016, 24, 285-297.	1 0.784314 1.0	l rgBT /Over 10
76	Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction. Chromosome Research, 2016, 24, 299-307.	1.0	4
77	Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Research, 2016, 24, 231-242.	1.0	17
78	<i>Plantago lagopus </i> B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA. Cytogenetic and Genome Research, 2016, 148, 68-73.	0.6	20
79	Restructuring of Holocentric Centromeres During Meiosis in the Plant <i>Rhynchospora pubera</i> . Genetics, 2016, 204, 555-568.	1.2	32
80	Developmental programmed cell death during asymmetric microsporogenesis in holocentric species of Rhynchospora(Cyperaceae). Journal of Experimental Botany, 2016, 67, 5391-5401.	2.4	13
81	Similar Sister Chromatid Arrangement in Mono- and Holocentric Plant Chromosomes. Cytogenetic and Genome Research, 2016, 149, 218-225.	0.6	11
82	Analysis of transposable elements and organellar <scp>DNA</scp> in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant Journal, 2016, 88, 387-396.	2.8	44
83	The distribution of α-kleisin during meiosis in the holocentromeric plant Luzula elegans. Chromosome Research, 2016, 24, 393-405.	1.0	16
84	Haploidization via Chromosome Elimination: Means and Mechanisms. Annual Review of Plant Biology, 2016, 67, 421-438.	8.6	95
85	A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants. Journal of Visualized Experiments, 2015, , e53470.	0.2	25
86	Mitotic lifecycle of chromosomal 3x <scp>HMG</scp> â€box proteins and the role of their Nâ€ŧerminal domain in the association with r <scp>DNA</scp> loci and proteolysis. New Phytologist, 2015, 208, 1067-1077.	3.5	33
87	Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombinationâ€poor region comprises more than half of barley chromosome 3 <scp>H</scp> . Plant Journal, 2015, 84, 385-394.	2.8	32
88	Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Frontiers in Plant Science, 2015, 6, 846.	1.7	18
89	Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma, 2015, 124, 519-528.	1.0	44
90	The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma, 2015, 124, 503-517.	1.0	48

#	Article	IF	CITATIONS
91	Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy. Cytogenetic and Genome Research, 2015, 147, 135-143.	0.6	3
92	Engineering of plant chromosomes. Chromosome Research, 2015, 23, 69-76.	1.0	7
93	The differential loading of two barley CENH3 variants into distinct centromeric substructures is cell type- and development-specific. Chromosome Research, 2015, 23, 277-284.	1.0	44
94	A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenetic and Genome Research, 2015, 146, 71-79.	0.6	69
95	TPX2 Protein of Arabidopsis Activates Aurora Kinase 1, But Not Aurora Kinase 3 In Vitro. Plant Molecular Biology Reporter, 2015, 33, 1988-1995.	1.0	16
96	Holocentromeres in <i>Rhynchospora</i> are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13633-13638.	3.3	96
97	Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11211-11216.	3.3	126
98	Genes on B chromosomes: Old questions revisited with new tools. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 64-70.	0.9	68
99	Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley. PLoS ONE, 2015, 10, e0137677.	1.1	34
100	FISH Mapping for Physical Map Improvement in the Large Genome of Barley: A Case Study on Chromosome 2H. Cytogenetic and Genome Research, 2014, 143, 275-279.	0.6	3
101	Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Molecular Cytogenetics, 2014, 7, 91.	0.4	46
102	Anti-Phosphorylated Histone H2AThr120: A Universal Microscopic Marker for Centromeric Chromatin of Mono- and Holocentric Plant Species. Cytogenetic and Genome Research, 2014, 143, 150-156.	0.6	50
103	How to eliminate a partner for good. Cell Cycle, 2014, 13, 1368-1369.	1.3	0
104	Holocentric plant meiosis: first sisters, then homologues. Cell Cycle, 2014, 13, 3623-3624.	1.3	13
105	The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in <i>Arabidopsis</i> . Nucleic Acids Research, 2014, 42, 4332-4347.	6.5	54
106	Kmasker - A Tool for in silico Prediction of Single-Copy FISH Probes for the Large-Genome SpeciesHordeum vulgare. Cytogenetic and Genome Research, 2014, 142, 66-78.	0.6	23
107	Evolution and biology of supernumerary B chromosomes. Cellular and Molecular Life Sciences, 2014, 71, 467-478.	2.4	136
108	Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nature Communications, 2014, 5, 4979.	5.8	77

#	Article	IF	CITATIONS
109	Altered expression of Aurora kinases in Arabidopsis results in aneu―and polyploidization. Plant Journal, 2014, 80, 449-461.	2.8	32
110	B Chromosomes of Aegilops speltoides Are Enriched in Organelle Genome-Derived Sequences. PLoS ONE, 2014, 9, e90214.	1.1	38
111	Characterization of Centromeric Histone H3 (CENH3) Variants in Cultivated and Wild Carrots (Daucus) Tj ETQq1	1 0.7843 1.1	14.rgBT /Ov 27
112	De novo generation of plant centromeres at tandem repeats. Chromosoma, 2013, 122, 233-241.	1.0	18
113	The holocentric species <i><scp>L</scp>uzula elegans</i> shows interplay between centromere and largeâ€scale genome organization. Plant Journal, 2013, 73, 555-565.	2.8	86
114	Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 2969-2982.	1.8	15
115	B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Annals of Botany, 2013, 112, 527-534.	1.4	22
116	Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Research, 2013, 21, 739-751.	1.0	37
117	Biology and Evolution of B Chromosomes. , 2013, , 149-165.		29
118	High opy sequences reveal distinct evolution of the rye B chromosome. New Phytologist, 2013, 199, 550-558.	3.5	75
119	Epigenetic Control of Cell Division. Signaling and Communication in Plants, 2013, , 155-175.	0.5	4
120	Chromatin Alterations during Pollen Development inHordeum vulgare. Cytogenetic and Genome Research, 2013, 141, 50-57.	0.6	17
121	Formation and Expression of Pseudogenes on the B Chromosome of Rye. Plant Cell, 2013, 25, 2536-2544.	3.1	74
122	In Vitro Phosphorylation of Histone H3 at Threonine 3 by Arabidopsis Haspin Is Strongly Influenced by Posttranslational Modifications of Adjacent Amino Acids. Molecular Plant, 2013, 6, 574-576.	3.9	16
123	Engineered plant minichromosomes. International Journal of Developmental Biology, 2013, 57, 651-657.	0.3	5
124	Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13343-13346.	3.3	173
125	Plant B Chromosomes: What Makes Them Different?. , 2012, , 59-77.		6

126 Chromosome Microdissection and Utilization of Microisolated DNA. , 2012, , 257-270.

0

#	Article	IF	CITATIONS
127	Nondisjunction in Favor of a Chromosome: The Mechanism of Rye B Chromosome Drive during Pollen Mitosis. Plant Cell, 2012, 24, 4124-4134.	3.1	77
128	Cytomolecular characterization of de novo formed rye B chromosome variants. Molecular Cytogenetics, 2012, 5, 34.	0.4	14
129	Arabidopsis AtNek2 Kinase is Essential and Associates with Microtubules. Plant Molecular Biology Reporter, 2012, 30, 339-348.	1.0	13
130	Telomere-mediated truncation of barley chromosomes. Chromosoma, 2012, 121, 181-190.	1.0	41
131	Current SEM techniques for de―and re onstruction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. Journal of Microscopy, 2012, 246, 96-106.	0.8	22
132	<i>Arabidopsis</i> α Aurora Kinases Function in Formative Cell Division Plane Orientation. Plant Cell, 2011, 23, 4013-4024.	3.1	97
133	Use of methylation filtration and COt fractionation for analysis of genome composition and comparative genomics in bread wheat. Journal of Genetics and Genomics, 2011, 38, 315-325.	1.7	2
134	Characterization of Eu- and Heterochromatin of <i>Citrus</i> with a Focus on the Condensation Behavior of 45S rDNA Chromatin. Cytogenetic and Genome Research, 2011, 134, 72-82.	0.6	35
135	Holocentric Chromosomes of <i>Luzula elegans</i> Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region. Cytogenetic and Genome Research, 2011, 134, 220-228.	0.6	65
136	Plant B Chromosomes. Methods in Molecular Biology, 2011, 701, 97-111.	0.4	5
137	Chromosomes Carrying Meiotic Avoidance Loci in Three Apomictic Eudicot <i>Hieracium</i> Subgenus <i>Pilosella</i> Species Share Structural Features with Two Monocot Apomicts Â. Plant Physiology, 2011, 157, 1327-1341.	2.3	51
138	Additive inheritance of histone modifications in <i>Arabidopsis thaliana</i> intraâ€specific hybrids. Plant Journal, 2011, 67, 691-700.	2.8	48
139	Induction of telomereâ€mediated chromosomal truncation and stability of truncated chromosomes in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 68, 28-39.	2.8	44
140	AtHaspin phosphorylates histone H3 at threonine 3 during mitosis and contributes to embryonic patterning in Arabidopsis. Plant Journal, 2011, 68, 443-454.	2.8	28
141	The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. New Phytologist, 2011, 192, 577-589.	3.5	55
142	CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale) Tj ETQq	0 0 0 0. ₆ 8T	/Overlock 10 ⁻ 44
143	Similar rye A and B chromosome organization in meristematic and differentiated interphase nuclei. Chromosome Research, 2011, 19, 645-655.	1.0	8

¹⁴⁴Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell, Tissue and
Organ Culture, 2011, 104, 321-327.1.233

#	Article	IF	CITATIONS
145	Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E498-505.	3.3	260
146	Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theoretical and Applied Genetics, 2010, 120, 215-226.	1.8	38
147	Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Research, 2010, 18, 841-850.	1.0	50
148	The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant Journal, 2010, 61, 686-697.	2.8	134
149	The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Molecular Phylogenetics and Evolution, 2010, 56, 146-155.	1.2	41
150	Interspecific Hybrids of <i>Hordeum marinum </i> ssp. <i>marinum </i> × <i> H. bulbosum </i> Are Mitotically Stable and Reveal No Gross Alterations in Chromatin Properties. Cytogenetic and Genome Research, 2010, 129, 110-116.	0.6	9
151	Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1678-1683.	3.3	112
152	Preface. Cytogenetic and Genome Research, 2009, 124, 191-192.	0.6	0
153	Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences. Chromosoma, 2009, 118, 607-616.	1.0	52
154	Aurora1 phosphorylation activity on histone H3 and its crossâ€ŧalk with other postâ€ŧranslational histone modifications in Arabidopsis. Plant Journal, 2009, 59, 221-230.	2.8	44
155	A wholeâ€genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant Journal, 2009, 59, 712-722.	2.8	125
156	Distribution of Eu- and Heterochromatin in <i>Plantagoovata</i> . Cytogenetic and Genome Research, 2009, 125, 235-240.	0.6	18
157	Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum. , 2009, , 137-162.		4
158	Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant Journal, 2008, 53, 1027-1034.	2.8	92
159	Analysis of hybrid lethality in F1 wheat-rye hybrid embryos. Euphytica, 2008, 159, 367-375.	0.6	16
160	Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenetic and Genome Research, 2008, 122, 73-79.	0.6	39
161	The Expression Level of the Chromatin-Associated HMGB1 Protein Influences Growth, Stress Tolerance, and Transcriptome in Arabidopsis. Journal of Molecular Biology, 2008, 384, 9-21.	2.0	56
162	B chromosomes of <i>Puschkinia libanotica</i> are characterized by a reduced level of euchromatic histone H3 methylation marks. Cytogenetic and Genome Research, 2008, 121, 266-270.	0.6	5

#	Article	IF	CITATIONS
163	A Century of B Chromosomes in Plants: So What?. Annals of Botany, 2008, 101, 767-775.	1.4	126
164	Engineered Plant Minichromosomes: A Bottom-Up Success?. Plant Cell, 2008, 20, 8-10.	3.1	31
165	Engineered Plant Minichromosomes: A Resurrection of B Chromosomes?. Plant Cell, 2007, 19, 2323-2327.	3.1	27
166	Transcriptionally Active Heterochromatin in Rye B Chromosomes. Plant Cell, 2007, 19, 1738-1749.	3.1	75
167	Evolution and function of B chromosome 45S rDNA sequences in Brachycome dichromosomatica. Genome, 2007, 50, 638-644.	0.9	21
168	Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum. Genome, 2007, 50, 435-442.	0.9	25
169	Phosphorylation of histone H3 in plants—A dynamic affair. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 308-315.	2.4	110
170	The cytogenetics and genomics of crop plants. Chromosome Research, 2007, 15, 1-2.	1.0	2
171	B chromosomes of B. dichromosomatica show a reduced level of euchromatic histone H3 methylation marks. Chromosome Research, 2007, 15, 215-222.	1.0	22
172	CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma, 2007, 116, 275-283.	1.0	107
173	<i>In Situ</i> Hybridization to Plant Tissues and Chromosomes. , 2006, 326, 203-218.		15
174	Elimination of chromosomes in <i>Hordeum vulgare</i> × <i>H. bulbosum</i> crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenetic and Genome Research, 2006, 114, 169-174.	0.6	56
175	Chromosomal histone modification patterns – from conservation to diversity. Trends in Plant Science, 2006, 11, 199-208.	4.3	338
176	Quantum dotsa versatile tool in plant science?. Journal of Nanobiotechnology, 2006, 4, 5.	4.2	27
177	Internal transcribed spacer sequence analyses indicate cytoevolutionary patterns within Brachycome Cass. (Asteraceae). Plant Systematics and Evolution, 2006, 259, 39-51.	0.3	8
178	Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma, 2006, 227, 147-153.	1.0	61
179	Characterization of a peg-like terminal NOR structure with light microscopy and high-resolution scanning electron microscopy. Chromosoma, 2006, 115, 50-59.	1.0	15

180 Construction of comparative genetic maps of two 4Bs.4Bl-5Rl translocations in bread wheat (Triticum) Tj ETQq0 0 0 grgBT /Overlock 10 T

#	Article	IF	CITATIONS
181	Arabidopsis Chromatin-Associated HMGA and HMGB Use Different Nuclear Targeting Signals and Display Highly Dynamic Localization within the Nucleus. Plant Cell, 2006, 18, 2904-2918.	3.1	86
182	Molecular Evidence for Transcription of Genes on a B Chromosome in Crepis capillaris. Genetics, 2005, 171, 269-278.	1.2	72
183	Stable barley chromosomes without centromeric repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9842-9847.	3.3	199
184	Identification and Dynamics of Two Classes of Aurora-Like Kinases in Arabidopsis and Other Plants. Plant Cell, 2005, 17, 836-848.	3.1	135
185	Characterisation of the low-chromosome number grass <i>Colpodium versicolor</i> (Stev.) Schmalh. (2n = 4) by molecular cytogenetics. Caryologia, 2005, 58, 241-245.	0.2	15
186	Uniparental Chromosome Elimination at Mitosis and Interphase in Wheat and Pearl Millet Crosses Involves Micronucleus Formation, Progressive Heterochromatinization, and DNA Fragmentation. Plant Cell, 2005, 17, 2431-2438.	3.1	185
187	Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenetic and Genome Research, 2005, 109, 148-155.	0.6	51
188	The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. Plant Journal, 2004, 40, 660-671.	2.8	82
189	Reduced metaphase I associations between the short arms of homoeologous chromosomes in a Hordeum vulgare L. � H. bulbosum L. diploid hybrid influences the frequency of recombinant progeny. Theoretical and Applied Genetics, 2004, 109, 911-916.	1.8	14
190	The B chromosomes in <i>Brachycome</i> . Cytogenetic and Genome Research, 2004, 106, 199-209.	0.6	18
191	Immunogold labeling of chromosomes for scanning electron microscopy: a closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare. Chromosome Research, 2003, 11, 585-596.	1.0	36
192	Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Molecular Biology, 2003, 51, 533-541.	2.0	16
193	DNA and proteins of plant centromeres. Current Opinion in Plant Biology, 2003, 6, 554-560.	3.5	99
194	Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant Journal, 2003, 33, 967-973.	2.8	186
195	The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenetic and Genome Research, 2003, 101, 172-176.	0.6	81
196	B chromosomes in plants: escapees from the A chromosome genome?. Trends in Plant Science, 2003, 8, 417-423.	4.3	204
197	Uniparental loss of ribosomal DNA in the allotetraploid grassZingeria trichopoda(2n= 8). Genome, 2003, 46, 156-163.	0.9	87
198	Chromosome numbers in Byblidaceae. Australian Journal of Botany, 2002, 50, 583.	0.3	9

#	Article	IF	CITATIONS
199	Karyotype analysis and physical mapping of 18S-5.8S-25S and 5S ribosomal RNA loci in species of genus Lens Miller (Fabaceae). Caryologia, 2002, 55, 121-128.	0.2	19
200	Characterization of the constriction with neocentric activity of 5RL chromosome in wheat. Chromosoma, 2002, 111, 228-235.	1.0	15
201	Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Research, 2002, 10, 467-476.	1.0	42
202	DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO Journal, 2002, 21, 6549-6559.	3.5	439
203	The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome, 2001, 44, 955-961.	0.9	35
204	The genomic complexity of micro B chromosomes of Brachycome dichromosomatica. Chromosoma, 2001, 110, 451-459.	1.0	40
205	Microdissection and chromosome painting of plant B chromosomes. , 2001, , 115-124.		10
206	The pericentromeric heterochromatin of the grass <i>Zingeria biebersteiniana</i> (2 <i>n</i> = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome, 2001, 44, 955-961.	0.9	12
207	Structure and evolution of supernumerary chromosomes in the Pacific giant salamander, Dicamptodon tenebrosus. Chromosome Research, 2000, 8, 477-485.	1.0	14
208	The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma, 2000, 109, 308-317.	1.0	119
209	Cloning and characterisation of polymorphic heterochromatic segments of Brachycome dichromosomatica. Chromosoma, 2000, 109, 206-213.	1.0	24
210	A monophyletic origin of the B chromosomes ofBrachycome dichromosomatica (Asteraceae). Plant Systematics and Evolution, 1999, 219, 127-135.	0.3	38
211	The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant Journal, 1999, 18, 675-679.	2.8	116
212	The acetylation patterns of histones H3 and H4 along Vicia faba chromosomes are different. Chromosome Research, 1998, 6, 59-63.	1.0	23
213	B-chromosome origin in the endemic New Zealand frog <i>Leiopelmahochstetteri</i> through sex chromosome devolution. Genome, 1998, 41, 14-22.	0.9	48
214	B-chromosome origin in the endemic New Zealand frog <i>Leiopelma hochstetteri</i> through sex chromosome devolution. Genome, 1998, 41, 14-22.	0.9	45
215	Ribosomal RNA genes specific to the B chromosomes in <i>Brachycome dichromosomatica</i> are not transcribed in leaf tissue. Genome, 1997, 40, 674-681.	0.9	38
216	Differences of histone H4 acetylation and replication timing between A and B chromosomes of Brachycome dichromosomatica. Chromosome Research, 1997, 5, 233-237.	1.0	36

#	Article	IF	CITATIONS
217	Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Research, 1997, 5, 57-6.	1.0	89
218	Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma, 1997, 106, 193-197.	1.0	40
219	A repetitive DNA sequence common to the different B chromosomes of the genus Brachycome. Chromosoma, 1997, 106, 513-519.	1.0	31
220	A repetitive DNA sequence common to the different B chromosomes of the genus. Chromosoma, 1997, 106, 513.	1.0	36
221	Chromosome ?painting? in plants ? a feasible technique?. Chromosoma, 1996, 104, 315-320.	1.0	72
222	Efficient preparation of plant metaphase spreads. Plant Molecular Biology Reporter, 1996, 14, 149-155.	1.0	11
223	Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B-chromosome of rye (Secale cereale). Chromosoma, 1996, 105, 97-103.	1.0	84
224	The molecular organisation of a B chromosome tandem repeat sequence fromBrachycome dichromosomatica. Chromosoma, 1996, 105, 223-230.	1.0	25
225	Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Research, 1996, 4, 191-194.	1.0	42
226	Computer-assisted system combining image analysis and chromosome dissection. Microscopy Research and Technique, 1996, 34, 474-477.	1.2	7
227	Molecular-cytogenetic characterization of a higher plant centromere/kinetochore complex. Theoretical and Applied Genetics, 1996, 93, 477-484.	1.8	20
228	Aneuploids as a key for new molecular cloning strategies: development of DNA markers by microdissection using Triticum aestivum-Aegilops markgrafii chromosome addition line B. Euphytica, 1996, 89, 41-47.	0.6	17
229	Chromosome ?painting? in plants ? a feasible technique?. Chromosoma, 1996, 104, 315-320.	1.0	58
230	Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B-chromosome of rye (Secale cereale). Chromosoma, 1996, 105, 97-103.	1.0	21
231	The molecular organisation of a B chromosome tandem repeat sequence from Brachycome dichromosomatica. Chromosoma, 1996, 105, 223-230.	1.0	10
232	Immunostaining and interphase arrangement of field bean kinetochores. Chromosome Research, 1995, 3, 27-31.	1.0	29
233	Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome, 1994, 37, 550-555.	0.9	50
234	Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean. Molecular Genetics and Genomics, 1994, 243, 173-177.	2.4	46

#	Article	IF	CITATIONS
235	Genetics of sex determination in flowering plants. Genesis, 1994, 15, 214-230.	3.3	142
236	The distribution of cDNA sequences on field bean chromosomes. Genome, 1994, 37, 1065-1067.	0.9	7
237	Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma, 1993, 102, 96-101.	1.0	79
238	Microdissection and microcloning of the barley (Hordeum vulgare L.) chromosome 1HS. Theoretical and Applied Genetics, 1993, 86, 629-636.	1.8	73
239	Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant Journal, 1993, 3, 883-886.	2.8	28
240	Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine. Genome, 1993, 36, 387-390.	0.9	89
241	Histone modifications during tobacco male meiosis. Biologia Plantarum, 0, 63, 681-689.	1.9	5