List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817574/publications.pdf Version: 2024-02-01

Μειζητι Βλο

#	Article	IF	CITATIONS
1	Error estimates of local energy regularization for the logarithmic Schrödinger equation. Mathematical Models and Methods in Applied Sciences, 2022, 32, 101-136.	1.7	7
2	Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. Journal of Computational Physics, 2022, 460, 111180.	1.9	10
3	An energy-stable parametric finite element method for simulating solid-state dewetting. IMA Journal of Numerical Analysis, 2021, 41, 2026-2055.	1.5	13
4	Uniform Error Bounds of Time-Splitting Methods for the Nonlinear Dirac Equation in the Nonrelativistic Regime without Magnetic Potential. SIAM Journal on Numerical Analysis, 2021, 59, 1040-1066.	1.1	9
5	Controlling fingering instabilities in Hele-Shaw flows in the presence of wetting film effects. Physical Review E, 2021, 103, 063105.	0.8	10
6	An energy-stable parametric finite element method for anisotropic surface diffusion. Journal of Computational Physics, 2021, 446, 110658.	1.9	11
7	A Structure-Preserving Parametric Finite Element Method for Surface Diffusion. SIAM Journal on Numerical Analysis, 2021, 59, 2775-2799.	1.1	23
8	An efficient and accurate MPI-based parallel simulator for streamer discharges in three dimensions. Journal of Computational Physics, 2020, 401, 109026.	1.9	13
9	Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime. Mathematics of Computation, 2020, 89, 2141-2173.	1.1	13
10	Sharp-Interface Model for Simulating Solid-State Dewetting in Three Dimensions. SIAM Journal on Applied Mathematics, 2020, 80, 1654-1677.	0.8	18
11	A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional SchrĶdinger operator. Journal of Computational Physics, 2020, 421, 109733.	1.9	4
12	A Parametric Finite Element Method for Solid-State Dewetting Problems in Three Dimensions. SIAM Journal of Scientific Computing, 2020, 42, B327-B352.	1.3	21
13	Accurate and efficient calculation of photoionization in streamer discharges using fast multipole method. Plasma Sources Science and Technology, 2020, 29, 125010.	1.3	2
14	Collective synchronization of the multi-component Gross–Pitaevskii–Lohe system. Physica D: Nonlinear Phenomena, 2019, 400, 132158.	1.3	6
15	Regularized numerical methods for the logarithmic Schrödinger equation. Numerische Mathematik, 2019, 143, 461-487.	0.9	22
16	Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Journal of Computational Physics, 2019, 398, 108886.	1.9	26
17	Error Estimates of a Regularized Finite Difference Method for the Logarithmic SchrĶdinger Equation. SIAM Journal on Numerical Analysis, 2019, 57, 657-680	1.1	31
18	A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation. Research in Mathematical Sciences, 2019, 6, 1.	0.5	14

#	Article	IF	CITATIONS
19	Computing Ground States of BoseEinstein Condensates with Higher Order Interaction via a Regularized Density Function Formulation. SIAM Journal of Scientific Computing, 2019, 41, B1284-B1309.	1.3	5
20	Application of Onsager's variational principle to the dynamics of a solid toroidal island on a substrate. Acta Materialia, 2019, 163, 154-160.	3.8	14
21	Ground states of Bose–Einstein condensates with higher order interaction. Physica D: Nonlinear Phenomena, 2019, 386-387, 38-48.	1.3	5
22	Fundamental gaps of the fractional SchrĶdinger operator. Communications in Mathematical Sciences, 2019, 17, 447-471.	0.5	3
23	Mechanical transduction via a single soft polymer. Physical Review E, 2018, 97, 042504.	0.8	4
24	A Uniformly and Optimally Accurate Method for the Zakharov System in the Subsonic Limit Regime. SIAM Journal of Scientific Computing, 2018, 40, A929-A953.	1.3	17
25	Polymer-Based Accurate Positioning: An Exact Worm-like-Chain Study. ACS Omega, 2018, 3, 14318-14326.	1.6	2
26	Fundamental gaps of the Gross–Pitaevskii equation with repulsive interaction. Asymptotic Analysis, 2018, 110, 53-82.	0.2	1
27	Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates. Physical Review A, 2018, 98, .	1.0	15
28	Solid-state dewetting on curved substrates. Physical Review Materials, 2018, 2, .	0.9	8
29	Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11, 1037-1062.	0.5	6
30	A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schr¶dinger equations in the nonrelativistic limit regime. Numerische Mathematik, 2017, 135, 833-873.	0.9	35
31	A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. Journal of Computational Physics, 2017, 330, 380-400.	1.9	36
32	Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures. Acta Materialia, 2017, 128, 345-350.	3.8	7
33	Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, 2017, 71, 1094-1134.	1.1	42
34	Uniform Error Bounds of a Finite Difference Method for the Zakharov System in the Subsonic Limit Regime via an Asymptotic Consistent Formulation. Multiscale Modeling and Simulation, 2017, 15, 977-1002.	0.6	17
35	Stable Equilibria of Anisotropic Particles on Substrates: A Generalized Winterbottom Construction. SIAM Journal on Applied Mathematics, 2017, 77, 2093-2118.	0.8	21
36	A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates. Journal of Scientific Computing, 2017, 73, 303-329.	1.1	30

#	Article	IF	CITATIONS
37	Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime. Mathematics of Computation, 2017, 87, 2133-2158.	1.1	16
38	Dimension reduction for dipolar Bose-Einstein condensates in the strong interaction regime. Kinetic and Related Models, 2017, 10, 553-571.	0.5	4
39	Mean-field regime and Thomas–Fermi approximations of trapped Bose–Einstein condensates with higher-order interactions in one and two dimensions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 125304.	0.6	7
40	The Kinematic Effects of the Defects in Liquid Crystal Dynamics. Communications in Computational Physics, 2016, 20, 234-249.	0.7	3
41	Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Science China Mathematics, 2016, 59, 1461-1494.	0.8	51
42	A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime. Journal of Computational Physics, 2016, 327, 270-293.	1.9	28
43	Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate. Physical Review Letters, 2016, 116, 240402.	2.9	16
44	Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT. Communications in Computational Physics, 2016, 19, 1141-1166.	0.7	24
45	A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime. SIAM Journal on Numerical Analysis, 2016, 54, 1785-1812.	1.1	25
46	Solid-state dewetting and island morphologies in strongly anisotropic materials. Scripta Materialia, 2016, 115, 123-127.	2.6	28
47	Preface: Special Issue Dedicated to Professor Eitan Tadmor's 60th Birthday. Communications in Computational Physics, 2016, 19, i-iii.	0.7	0
48	Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Physical Review B, 2015, 92, .	1.1	47
49	Ground States and Dynamics of Spin-Orbit-Coupled Bose–Einstein Condensates. SIAM Journal on Applied Mathematics, 2015, 75, 492-517.	0.8	35
50	Computing the ground state and dynamics of the nonlinear SchrĶdinger equation with nonlocal interactions via the nonuniform FFT. Journal of Computational Physics, 2015, 296, 72-89.	1.9	25
51	Dimension reduction for anisotropic Bose–Einstein condensates in the strong interaction regime. Nonlinearity, 2015, 28, 755-772.	0.6	4
52	Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Physical Review B, 2015, 91, .	1.1	31
53	Uniform and Optimal Error Estimates of an Exponential Wave Integrator Sine Pseudospectral Method for the Nonlinear SchrĶdinger Equation with Wave Operator. SIAM Journal on Numerical Analysis, 2014, 52, 1103-1127.	1.1	57
54	Numerical Study of Quantized Vortex Interactions in the Nonlinear SchrĶdinger Equation on Bounded Domains. Multiscale Modeling and Simulation, 2014, 12, 411-439.	0.6	14

#	Article	IF	CITATIONS
55	A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein–Gordon Equation in the Nonrelativistic Limit Regime. SIAM Journal on Numerical Analysis, 2014, 52, 2488-2511.	1.1	63
56	Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT. SIAM Journal of Scientific Computing, 2014, 36, B777-B794.	1.3	41
57	A variational-difference numerical method for designing progressive-addition lenses. CAD Computer Aided Design, 2014, 48, 17-27.	1.4	42
58	Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Computer Physics Communications, 2013, 184, 2621-2633.	3.0	258
59	Numerical methods and comparison for computing dark and bright solitons in the nonlinear SchrĶdinger equation. Journal of Computational Physics, 2013, 235, 423-445.	1.9	79
60	An Exponential Wave Integrator Sine Pseudospectral Method for the KleinGordon–Zakharov System. SIAM Journal of Scientific Computing, 2013, 35, A2903-A2927.	1.3	54
61	A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating BoseEinstein Condensates via Rotating Lagrangian Coordinates. SIAM Journal of Scientific Computing, 2013, 35, A2671-A2695.	1.3	29
62	Efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates based on their characterizations. Journal of Computational Physics, 2013, 253, 189-208.	1.9	24
63	Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates. Physical Review A, 2013, 88, .	1.0	8
64	Dimension Reduction of the SchrĶdinger Equation with Coulomb and Anisotropic Confining Potentials. SIAM Journal on Applied Mathematics, 2013, 73, 2100-2123.	0.8	14
65	Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains. Communications in Computational Physics, 2013, 14, 819-850.	0.7	10
66	Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 2013, 6, 1-135.	0.5	337
67	Breathing oscillations of a trapped impurity in a Bose gas. Europhysics Letters, 2012, 98, 26001.	0.7	34
68	Subdiffusive spreading of a Bose-Einstein condensate in random potentials. Physical Review A, 2012, 86,	1.0	14
69	Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Mathematics of Computation, 2012, 82, 99-128.	1.1	130
70	Gross–Pitaevskii–Poisson Equations for Dipolar Bose–Einstein Condensate with Anisotropic Confinement. SIAM Journal on Mathematical Analysis, 2012, 44, 1713-1741.	0.9	22
71	Uniform Error Estimates of Finite Difference Methods for the Nonlinear SchrĶdinger Equation with Wave Operator. SIAM Journal on Numerical Analysis, 2012, 50, 492-521.	1.1	136
72	Phase field approach for simulating solid-state dewetting problems. Acta Materialia, 2012, 60, 5578-5592.	3.8	79

#	Article	IF	CITATIONS
73	Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime. Numerische Mathematik, 2012, 120, 189-229.	0.9	128
74	Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction. East Asian Journal on Applied Mathematics, 2011, 1, 49-81.	0.4	53
75	Scattering and bound states in two-dimensional anisotropic potentials. Physical Review A, 2011, 84, .	1.0	12
76	Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars. Journal of Computational Physics, 2011, 230, 5449-5469.	1.9	28
77	Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions. Physical Review A, 2010, 82, .	1.0	69
78	Efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates. Journal of Computational Physics, 2010, 229, 7874-7892.	1.9	114
79	Comparisons between sine-Gordon and perturbed nonlinear SchrĶdinger equations for modeling light bullets beyond critical collapse. Physica D: Nonlinear Phenomena, 2010, 239, 1120-1134.	1.3	27
80	Singular Limits of Klein–Gordon–Schrödinger Equations to Schrödinger–Yukawa Equations. Multiscale Modeling and Simulation, 2010, 8, 1742-1769.	0.6	14
81	Dynamical Laws of the Coupled Gross-Pitaevskii Equations for Spin-1 Bose-Einstein Condensates. Methods and Applications of Analysis, 2010, 17, 49-80.	0.1	16
82	Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential. Physical Review A, 2009, 79, .	1.0	78
83	A Generalized-Laguerre–Fourier–Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose–Einstein Condensates. SIAM Journal of Scientific Computing, 2009, 31, 3685-3711.	1.3	57
84	A generalized-Laguerre–Hermite pseudospectral method for computing symmetric and central vortex states in Bose–Einstein condensates. Journal of Computational Physics, 2008, 227, 9778-9793.	1.9	32
85	Quantized vortex stability and interaction in the nonlinear wave equation. Physica D: Nonlinear Phenomena, 2008, 237, 2391-2410.	1.3	7
86	Computing Ground States of Spin-1 Bose–Einstein Condensates by the Normalized Gradient Flow. SIAM Journal of Scientific Computing, 2008, 30, 1925-1948.	1.3	64
87	Self-trapping of Bose-Einstein condensates expanding into shallow optical lattices. Physical Review A, 2008, 77, .	1.0	7
88	Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field. Physical Review E, 2008, 78, 066704.	0.8	39
89	Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling. Europhysics Letters, 2008, 82, 30004.	0.7	81
90	Dynamics of vortices in weakly interacting Bose-Einstein condensates. Physical Review A, 2007, 76, .	1.0	30

#	Article	IF	CITATIONS
91	The Dynamics and Interaction of Quantized Vortices in the Ginzburg–Landau–Schrödinger Equation. SIAM Journal on Applied Mathematics, 2007, 67, 1740-1775.	0.8	23
92	A Mass and Magnetization Conservative and Energy-Diminishing Numerical Method for Computing Ground State of Spin-1 Bose–Einstein Condensates. SIAM Journal on Numerical Analysis, 2007, 45, 2177-2200.	1.1	31
93	Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation. European Journal of Applied Mathematics, 2007, 18, 607-630.	1.4	26
94	Convergence rate of dimension reduction in Bose–Einstein condensates. Computer Physics Communications, 2007, 177, 832-850.	3.0	15
95	Dynamics of the center of mass in rotating Bose–Einstein condensates. Applied Numerical Mathematics, 2007, 57, 697-709.	1.2	16
96	Efficient and accurate numerical methods for the Klein–Gordon–Schrödinger equations. Journal of Computational Physics, 2007, 225, 1863-1893.	1.9	101
97	Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation. Physica D: Nonlinear Phenomena, 2007, 234, 49-69.	1.3	48
98	Ground states and dynamics of rotating Bose-Einstein condensates. , 2007, , 215-255.		3
99	The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics. Lecture Notes Series, Institute for Mathematical Sciences, 2007, , 141-239.	0.2	20
100	Dynamics of Rotating BoseEinstein Condensates and its Efficient and Accurate Numerical Computation. SIAM Journal on Applied Mathematics, 2006, 66, 758-786.	0.8	83
101	An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates. Journal of Computational Physics, 2006, 217, 612-626.	1.9	111
102	Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates. Journal of Computational Physics, 2006, 219, 836-854.	1.9	112
103	Continuous configuration time-dependent self-consistent field method for polyatomic quantum dynamical problems. Journal of Chemical Physics, 2005, 122, 091101.	1.2	8
104	DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION. Mathematical Models and Methods in Applied Sciences, 2005, 15, 1863-1896.	1.7	39
105	ON THE GROSS–PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS. Mathematical Models and Methods in Applied Sciences, 2005, 15, 767-782.	1.7	16
106	Efficient and Stable Numerical Methods for the Generalized and Vector Zakharov System. SIAM Journal of Scientific Computing, 2005, 26, 1057-1088.	1.3	42
107	A Fourth-Order Time-Splitting LaguerreHermite Pseudospectral Method for BoseEinstein Condensates. SIAM Journal of Scientific Computing, 2005, 26, 2010-2028.	1.3	123
108	Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates. Communications in Mathematical Sciences, 2005, 3, 57-88.	0.5	104

#	Article	IF	CITATIONS
109	Three-dimensional simulation of jet formation in collapsing condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 329-343.	0.6	40
110	An efficient and stable numerical method for the Maxwell–Dirac system. Journal of Computational Physics, 2004, 199, 663-687.	1.9	57
111	Computing the Ground State Solution of BoseEinstein Condensates by a Normalized Gradient Flow. SIAM Journal of Scientific Computing, 2004, 25, 1674-1697.	1.3	316
112	Ground States and Dynamics of Multicomponent Bose–Einstein Condensates. Multiscale Modeling and Simulation, 2004, 2, 210-236.	0.6	128
113	Quantum kinetic theory: modelling and numerics for Bose-Einstein condensation. Modeling and Simulation in Science, Engineering and Technology, 2004, , 287-320.	0.4	6
114	Numerical Methods for the Nonlinear SchrĶdinger Equation with Nonzero Far-field Conditions. Methods and Applications of Analysis, 2004, 11, 367-388.	0.1	24
115	Error bounds for the finite element approximation of an incompressible material in an unbounded domain. Numerische Mathematik, 2003, 93, 415-444.	0.9	8
116	Ground-state solution of Bose–Einstein condensate by directly minimizing the energy functional. Journal of Computational Physics, 2003, 187, 230-254.	1.9	118
117	Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. Journal of Computational Physics, 2003, 187, 318-342.	1.9	465
118	Numerical methods for the generalized Zakharov system. Journal of Computational Physics, 2003, 190, 201-228.	1.9	64
119	Approximation and comparison for motion by mean curvature with intersection points. Computers and Mathematics With Applications, 2003, 46, 1211-1228.	1.4	7
120	An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity. SIAM Journal on Numerical Analysis, 2003, 41, 1406-1426.	1.1	84
121	Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear SchrĶdinger Equations in the Semiclassical Regimes. SIAM Journal of Scientific Computing, 2003, 25, 27-64.	1.3	167
122	Error bounds for the finite-element approximation of the exterior Stokes equations in two dimensions. IMA Journal of Numerical Analysis, 2003, 23, 125-148.	1.5	3
123	Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X _{alpha} Model. Communications in Mathematical Sciences, 2003, 1, 809-828.	0.5	41
124	On Time-Splitting Spectral Approximations for the Schrödinger Equation in the Semiclassical Regime. Journal of Computational Physics, 2002, 175, 487-524.	1.9	318
125	The Random Projection Method for Stiff Multispecies Detonation Capturing. Journal of Computational Physics, 2002, 178, 37-57.	1.9	20
126	Error estimates on the random projection methods for hyperbolic conservation laws with stiff reaction terms. Applied Numerical Mathematics, 2002, 43, 315-333.	1.2	4

#	Article	IF	CITATIONS
127	An economical finite element approximation of generalized Newtonian flows. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 3637-3648.	3.4	13
128	The random projection method for a model problem of combustion with stiff chemical reactions. Applied Mathematics and Computation, 2002, 130, 561-571.	1.4	6
129	The Random Projection Method for Stiff Detonation Capturing. SIAM Journal of Scientific Computing, 2001, 23, 1000-1026.	1.3	16
130	Numerical simulations of fracture problems by coupling the FEM and the direct method of lines. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 4831-4846.	3.4	7
131	Weakly compressible high-order I-stable central difference schemes for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 5009-5026.	3.4	8
132	ON THE INF–SUP CONDITION OF MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUIDS. Mathematical Models and Methods in Applied Sciences, 2001, 11, 883-901.	1.7	19
133	The Random Projection Method for Stiff Multi-species Detonation Computation. , 2001, , 139-148.		0
134	Error estimates for the finite element approximation of linear elastic equations in an unbounded domain. Mathematics of Computation, 2000, 70, 1437-1460.	1.1	10
135	The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms. Journal of Computational Physics, 2000, 163, 216-248.	1.9	62
136	Artificial boundary conditions for incompressible Navier–Stokes equations: A well-posed result. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 595-611.	3.4	8
137	High-order local artificial boundary conditions for problems in unbounded domains. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 455-471.	3.4	17
138	The artificial boundary conditions for computing the flow around a submerged body. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 473-482.	3.4	5
139	Error Estimates for the Finite Element Approximation of Problems in Unbounded Domains. SIAM Journal on Numerical Analysis, 2000, 37, 1101-1119.	1.1	30
140	The discrete artificial boundary condition on a polygonal artificial boundary for the exterior problem of Poisson equation by using the direct method of lines. Computer Methods in Applied Mechanics and Engineering, 1999, 179, 345-360.	3.4	9
141	The direct method of lines for the problem of infinite elastic foundation. Computer Methods in Applied Mechanics and Engineering, 1999, 175, 157-173.	3.4	9
142	A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow. ESAIM: Mathematical Modelling and Numerical Analysis, 1998, 32, 843-858.	0.8	22
143	Artificial boundary conditions for two-dimensional incompressible viscous flows around an obstacle. Computer Methods in Applied Mechanics and Engineering, 1997, 147, 263-273.	3.4	3
144	Numerical simulation for the problem of infinite elastic foundation. Computer Methods in Applied Mechanics and Engineering, 1997, 147, 369-385.	3.4	18

#	Article	IF	CITATIONS
145	AN ARTIFICIAL BOUNDARY CONDITION FOR TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOWS USING THE METHOD OF LINES. International Journal for Numerical Methods in Fluids, 1996, 22, 483-493.	0.9	20
146	Nonlocal Artificial Boundary Conditions for the Incompressible Viscous Flow in a Channel Using Spectral Techniques. Journal of Computational Physics, 1996, 126, 52-63.	1.9	9
147	A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using a fast iterative method. Journal of Computational Physics, 1994, 114, 201-208.	1.9	38