Steven Evett

List of Publications by Citations

Source: https://exaly.com/author-pdf/8817379/steven-evett-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 190
 5,455
 43
 67

 papers
 citations
 h-index
 g-index

 201
 6,180
 2.7
 5.68

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
190	ET mapping for agricultural water management: present status and challenges. <i>Irrigation Science</i> , 2008 , 26, 223-237	3.1	252
189	Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. <i>Agronomy Journal</i> , 2009 , 101, 488-498	2.2	224
188	Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. <i>Vadose Zone Journal</i> , 2006 , 5, 894-907	2.7	156
187	Precision of Neutron Scattering and Capacitance Type Soil Water Content Gauges from Field Calibration. <i>Soil Science Society of America Journal</i> , 1995 , 59, 961-968	2.5	136
186	Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. <i>Agricultural Water Management</i> , 2007 , 90, 112-120	5.9	132
185	Evapotranspiration of Full-, Deficit-Irrigated, and Dryland Cotton on the Northern Texas High Plains. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2004 , 130, 277-285	1.1	130
184	Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: evidence of accelerated overland flow generation. <i>Journal of Hydrology</i> , 2004 , 287, 124-146	6	129
183	The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. <i>Agricultural and Forest Meteorology</i> , 2000 , 103, 335-3	48 ^{5.8}	128
182	Evapotranspiration, Yield, and Water Use Efficiency of Corn Hybrids Differing in Maturity. <i>Agronomy Journal</i> , 1998 , 90, 3-9	2.2	125
181	Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. <i>Advances in Water Resources</i> , 2012 , 50, 134-151	4.7	118
180	Soil Material, Temperature, and Salinity Effects on Calibration of Multisensor Capacitance Probes. <i>Soil Science Society of America Journal</i> , 2000 , 64, 1940-1946	2.5	105
179	Soil hydraulic properties of cropland compared with reestablished and native grassland. <i>Geoderma</i> , 2003 , 116, 47-60	6.7	102
178	Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET?. <i>Advances in Water Resources</i> , 2012 , 50, 79-90	4.7	92
177	Soil water sensing for water balance, ET and WUE. Agricultural Water Management, 2012, 104, 1-9	5.9	88
176	Soil Profile Water Content Determination: Spatiotemporal Variability of Electromagnetic and Neutron Probe Sensors in Access Tubes. <i>Vadose Zone Journal</i> , 2009 , 8, 926-941	2.7	88
175	Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX 0 8 field campaign. <i>Advances in Water Resources</i> , 2012 , 50, 162-177	4.7	87
174	Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales. <i>Advances in Water Resources</i> . 2012 . 50. 4-19	4.7	85

(2003-1997)

173	SORGHUM, AND CORN? SOUTHERN HIGH PLAINS. <i>Transactions of the American Society of Agricultural Engineers</i> , 1997 , 40, 623-634		75	
172	A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. <i>Agricultural Water Management</i> , 2012 , 107, 122-132	5.9	74	
171	Comparison of Five Models to Scale Daily Evapotranspiration from One-Time-of-Day Measurements. <i>Transactions of the ASABE</i> , 2006 , 49, 1409-1417	0.9	74	
170	Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. <i>Agricultural Water Management</i> , 2010 , 97, 1310-1316	5.9	72	
169	Advances in Soil Water Content Sensing: The Continuing Maturation of Technology and Theory. <i>Vadose Zone Journal</i> , 2005 , 4, 986-991	2.7	72	
168	Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. <i>Agricultural Water Management</i> , 2011 , 98, 1523-1535	5.9	70	
167	SUBSURFACE AND SURFACE MICROIRRIGATION OF CORN ?SOUTHERN HIGH PLAINS. <i>Transactions of the American Society of Agricultural Engineers</i> , 1997 , 40, 635-641		68	
166	Time Domain Reflectometry Laboratory Calibration in Travel Time, Bulk Electrical Conductivity, and Effective Frequency. <i>Vadose Zone Journal</i> , 2005 , 4, 1020-1029	2.7	68	
165	On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions. <i>Advances in Water Resources</i> , 2012 , 50, 62-78	4.7	67	
164	Wall Material and Capping Effects on Microlysimeter Temperatures and Evaporation. <i>Soil Science Society of America Journal</i> , 1995 , 59, 329-336	2.5	66	
163	Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. <i>Advances in Water Resources</i> , 2012 , 50, 20-30	4.7	65	
162	Morphological and Physiological Traits Associated with Canopy Temperature Depression in Three Closely Related Wheat Lines. <i>Crop Science</i> , 2008 , 48, 1897-1910	2.4	65	
161	Evapotranspiration of Irrigated Winter Wheat? Southern High Plains. <i>Transactions of the American Society of Agricultural Engineers</i> , 1995 , 38, 745-759		63	
160	Automation of a Center Pivot Using the Temperature-Time-Threshold Method of Irrigation Scheduling. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2008 , 134, 286-291	1.1	60	
159	Canopy Temperature Depression Sampling to Assess Grain Yield and Genotypic Differentiation in Winter Wheat. <i>Crop Science</i> , 2007 , 47, 1518-1529	2.4	59	
158	Nighttime Evapotranspiration from Alfalfa and Cotton in a Semiarid Climate. <i>Agronomy Journal</i> , 2006 , 98, 730-736	2.2	56	
157	THE TACQ COMPUTER PROGRAM FOR AUTOMATIC TIME DOMAIN REFLECTOMETRY MEASUREMENTS: II. WAVEFORM INTERPRETATION METHODS. <i>Transactions of the American Society of Agricultural Engineers</i> , 2000 , 43, 1947-1956		55	
156	A Depth Control Stand for Improved Accuracy with the Neutron Probe. <i>Vadose Zone Journal</i> , 2003 , 2, 642-649	2.7	53	

155	Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area. <i>Advances in Water Resources</i> , 2012 , 50, 120-133	4.7	52
154	Complex Permittivity Model for Time Domain Reflectometry Soil Water Content Sensing: I. Theory. <i>Soil Science Society of America Journal</i> , 2009 , 73, 886-897	2.5	52
153	Evapotranspiration and Yield of Corn Grown on Three High Plains Soils. <i>Agronomy Journal</i> , 1998 , 90, 44	7 <u>-45</u> 4	52
152	Remote Sensing Based Energy Balance Algorithms for Mapping ET: Current Status and Future Challenges. <i>Transactions of the ASABE</i> , 2007 , 50, 1639-1644	0.9	49
151	Dynamic prescription maps for site-specific variable rate irrigation of cotton. <i>Agricultural Water Management</i> , 2015 , 159, 123-138	5.9	48
150	Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. <i>Advances in Water Resources</i> , 2012 , 50, 41-54	4.7	46
149	THE TACQ COMPUTER PROGRAM FOR AUTOMATIC TIME DOMAIN REFLECTOMETRY MEASUREMENTS: I. DESIGN AND OPERATING CHARACTERISTICS. <i>Transactions of the American Society of Agricultural Engineers</i> , 2000 , 43, 1939-1946		44
148	ENWATBAL.BAS: a Mechanistic Evapotranspiration Model Written in Compiled Basic. <i>Agronomy Journal</i> , 1993 , 85, 763-772	2.2	43
147	Introduction: Can Water Use Efficiency Be Modeled Well Enough to Impact Crop Management?. <i>Agronomy Journal</i> , 2009 , 101, 423-425	2.2	42
146	COMPARISON OF SDI, LEPA, AND SPRAY IRRIGATION PERFORMANCE FOR GRAIN SORGHUM. Transactions of the American Society of Agricultural Engineers, 2004, 47, 1477-1492		42
145	The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST): Testbed Design and Evaluation of In Situ Sensors. <i>Vadose Zone Journal</i> , 2016 , 15, 1-11	2.7	42
144	Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. <i>Journal of Hydrology</i> , 2016 , 540, 574-5	5 6 7	42
143	Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. <i>Agricultural Water Management</i> , 2016 , 177, 274-283	5.9	42
142	Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach. <i>Advances in Water Resources</i> , 2012 , 50, 152-161	4.7	40
141	Estimating Hydraulic Properties of a Fine-textured Soil Using a Disc Infiltrometer. <i>Soil Science Society of America Journal</i> , 2002 , 66, 1409-1423	2.5	40
140	Effects of Wheat streak mosaic virus on Root Development and Water-Use Efficiency of Hard Red Winter Wheat. <i>Plant Disease</i> , 2010 , 94, 766-770	1.5	36
139	Evaluation of a wireless infrared thermometer with a narrow field of view. <i>Computers and Electronics in Agriculture</i> , 2011 , 76, 59-68	6.5	35
138	Advection Influences on Evapotranspiration of Alfalfa in a Semiarid Climate. <i>Agronomy Journal</i> , 2006 , 98, 1646-1654	2.2	35

(2010-2012)

137	Radiation Model for Row Crops: I. Geometric View Factors and Parameter Optimization. <i>Agronomy Journal</i> , 2012 , 104, 225-240	2.2	31	
136	Yield and water use of drought-tolerant maize hybrids in a semiarid environment. <i>Field Crops Research</i> , 2018 , 216, 1-9	5.5	31	
135	Field Calibration Accuracy and Utility of Four Down-Hole Water Content Sensors. <i>Vadose Zone Journal</i> , 2008 , 7, 992-1000	2.7	27	
134	Modeling Diurnal Canopy Temperature Dynamics Using One-Time-of-Day Measurements and a Reference Temperature Curve. <i>Agronomy Journal</i> , 2004 , 96, 1553-1561	2.2	27	
133	Complex Permittivity Model for Time Domain Reflectometry Soil Water Content Sensing: II. Calibration. <i>Soil Science Society of America Journal</i> , 2009 , 73, 898-909	2.5	26	
132	The Bushland Weighing Lysimeters: A Quarter Century of Crop ET Investigations to Advance Sustainable Irrigation. <i>Transactions of the ASABE</i> , 2016 , 59, 163-179	0.9	26	
131	Calibration and Validation of the SWAT Model for Predicting Daily ET over Irrigated Crops in the Texas High Plains Using Lysimetric Data. <i>Transactions of the ASABE</i> , 2016 , 59, 611-622	0.9	25	
130	Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains. <i>Agricultural Water Management</i> , 2015 , 162, 33-46	5.9	23	
129	Developing Wireless Sensor Networks for Monitoring Crop Canopy Temperature Using a Moving Sprinkler System as a Platform. <i>Applied Engineering in Agriculture</i> , 2010 , 26, 331-341	0.8	23	
128	COAXIAL MULTIPLEXER FOR TIME DOMAIN REFLECTOMETRY MEASUREMENT OF SOILWATER CONTENT AND BULK ELECTRICAL CONDUCTIVITY. <i>Transactions of the American Society of Agricultural Engineers</i> , 1998 , 41, 361-369		23	
127	Estimating Evapotranspiration for Dryland Cropping Systems in the Semiarid Texas High Plains Using SWAT. <i>Journal of the American Water Resources Association</i> , 2016 , 52, 298-314	2.1	23	
126	Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. <i>Advances in Water Resources</i> , 2012 , 50, 91-105	4.7	22	
125	Spatial and Temporal Analysis of Crop Conditions Using Multiple Canopy Temperature Maps Created with Center-Pivot-Mounted Infrared Thermometers. <i>Transactions of the ASABE</i> , 2007 , 50, 919-9	927 ⁹	22	
124	Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment. <i>Field Crops Research</i> , 2016 , 186, 66-77	5.5	21	
123	ASIMPLIFIED WEIGHING LYSIMETER FOR MONOLITHIC OR RECONSTRUCTED SOILS. <i>Applied Engineering in Agriculture</i> , 1998 , 14, 267-273	0.8	21	
122	Energy Balance Model of Spatially Variable Evaporation from Bare Soil. <i>Soil Science Society of America Journal</i> , 1994 , 58, 1604	2.5	21	
121	Crop response of drought-tolerant and conventional maize hybrids in a semiarid environment. <i>Irrigation Science</i> , 2016 , 34, 231-244	3.1	20	
120	Hydra Probe and Twelve-Wire Probe Comparisons in Fluids and Soil Cores. <i>Soil Science Society of America Journal</i> , 2010 , 74, 5-12	2.5	20	

119	Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity. <i>Agricultural Water Management</i> , 2009 , 96, 167-178	5.9	20
118	Identifying Advantages and Disadvantages of Variable Rate Irrigation: An Updated Review. <i>Applied Engineering in Agriculture</i> , 2019 , 35, 837-852	0.8	20
117	SOIL TEMPERATURE AND WATER EVAPORATION OF SMALL STEEL AND PLASTIC LYSIMETERS REPLACED DAILY. <i>Soil Science</i> , 2000 , 165, 890-895	0.9	19
116	Irrigation challenges in the sub-humid US Mid-South. <i>International Journal of Water</i> , 2014 , 8, 259	0.9	18
115	Development of a wireless computer vision instrument to detect biotic stress in wheat. <i>Sensors</i> , 2014 , 14, 17753-69	3.8	18
114	Measured and Simulated Surface Soil Drying. <i>Agronomy Journal</i> , 1995 , 87, 235-244	2.2	18
113	Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1. Model development and sensitivity analysis. <i>Agricultural and Forest Meteorology</i> , 2016 , 216, 115-128	5.8	17
112	Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter. <i>Sensors</i> , 2017 , 17,	3.8	17
111	Opportunities for woody crop production using treated wastewater in Egypt. I. Afforestation strategies. <i>International Journal of Phytoremediation</i> , 2011 , 13 Suppl 1, 102-21	3.9	17
110	Intercomparison of Nine Micrometeorological Stations during the BEAREX08 Field Campaign. <i>Journal of Atmospheric and Oceanic Technology</i> , 2011 , 28, 1390-1406	2	17
109	Length and Slope Effects on Runoff from Sodium Dispersed, Compacted Earth Microcatchments. Soil Science Society of America Journal, 1985 , 49, 734-738	2.5	17
108	Crop evapotranspiration calculation using infrared thermometers aboard center pivots. <i>Agricultural Water Management</i> , 2017 , 187, 173-189	5.9	16
107	Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08. <i>Advances in Water Resources</i> , 2012 , 50, 106-119	4.7	16
106	Lower Limits of Crop Water Use in Three Soil Textural Classes. <i>Soil Science Society of America Journal</i> , 2012 , 76, 607-616	2.5	16
105	Evaluation of a Direct-Coupled Time-Domain Reflectometry for Determination of Soil Water Content and Bulk Electrical Conductivity. <i>Vadose Zone Journal</i> , 2016 , 15, 1-8	2.7	16
104	Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters. <i>Agronomy</i> , 2019 , 9, 99	3.6	15
103	Soil heat flux variability influenced by row direction in irrigated cotton. <i>Advances in Water Resources</i> , 2012 , 50, 31-40	4.7	15
102	Radiation Model for Row Crops: II. Model Evaluation. <i>Agronomy Journal</i> , 2012 , 104, 241-255	2.2	15

(2015-2004)

101	Comparison of aerodynamic and radiometric surface temperature using precision weighing lysimeters 2004 ,		15
100	Climatic influence on residue decomposition prediction in the Wind Erosion Prediction System. <i>Theoretical and Applied Climatology</i> , 1996 , 54, 5-16	3	15
99	Using an integrated crop water stress index for irrigation scheduling of two corn hybrids in a semi-arid region. <i>Irrigation Science</i> , 2017 , 35, 451-467	3.1	14
98	Radiometer Footprint Model to Estimate Sunlit and Shaded Components for Row Crops. <i>Agronomy Journal</i> , 2010 , 102, 942-955	2.2	14
97	A Weighing Lysimeter for Crop Water Use Determination in the Jordan Valley, Jordan. <i>Transactions of the ASABE</i> , 2009 , 52, 155-169	0.9	14
96	Crop Coefficients Developed at Bushland, Texas for Corn, Wheat, Sorghum, Soybean, Cotton, and Alfalfa 2006 ,		14
95	Allometric Method to Estimate Leaf Area Index for Row Crops. <i>Agronomy Journal</i> , 2017 , 109, 883-894	2.2	13
94	Simulating Evapotranspiration and Yield Response of Selected Corn Varieties under Full and Limited Irrigation in the Texas High Plains Using DSSAT-CERES-Maize. <i>Transactions of the ASABE</i> , 2017 , 60, 837-846	0.9	13
93	Resolving discrepancies between laboratory-determined field capacity values and field water content observations: implications for irrigation management. <i>Irrigation Science</i> , 2019 , 37, 751-759	3.1	13
92	Two-Source Energy Balance Model: Refinements and Lysimeter Tests in the Southern High Plains. <i>Transactions of the ASABE</i> , 2012 , 55, 551-562	0.9	13
91	Grain Sorghum Response to Irrigation Scheduling with the Time-Temperature Threshold Method and Deficit Irrigation Levels. <i>Transactions of the ASABE</i> , 2012 , 55, 451-461	0.9	13
90	Grain sorghum growth, water use, and yield in contrasting soils. <i>Agricultural Water Management</i> , 1997 , 35, 29-42	5.9	13
89	Neutron Moisture Meter Calibration in Six Soils of Uzbekistan Affected by Carbonate Accumulation. <i>Vadose Zone Journal</i> , 2007 , 6, 406-412	2.7	13
88	AN EVAPOTRANSPIRATION RESEARCH FACILITY FOR SOIL-PLANT-ENVIRONMENT INTERACTIONS. <i>Applied Engineering in Agriculture</i> , 2005 , 21, 993-998	0.8	13
87	Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters. <i>Agricultural Water Management</i> , 2016 , 169, 115-128	5.9	13
86	Heat storage and its effect on the surface energy balance closure under advective conditions. <i>Agricultural and Forest Meteorology</i> , 2019 , 265, 56-69	5.8	13
85	Quantifying variability in field-scale evapotranspiration measurements in an irrigated agricultural region under advection. <i>Irrigation Science</i> , 2015 , 33, 325-338	3.1	12
84	Field-Measured, Hourly Soil Water Evaporation Stages in Relation to Reference Evapotranspiration Rate and Soil to Air Temperature Ratio. <i>Vadose Zone Journal</i> , 2015 , 14, vzj2014.07.0079	2.7	12

83	Advances in a Two-Source Energy Balance Model: Partitioning of Evaporation and Transpiration for Cotton. <i>Transactions of the ASABE</i> , 2016 , 59, 181-197	0.9	12
82	Soil heat flux calculation for sunlit and shaded surfaces under row crops: 2. Model test. <i>Agricultural and Forest Meteorology</i> , 2016 , 216, 129-140	5.8	11
81	Design of Access-Tube TDR Sensor for Soil Water Content: Theory. IEEE Sensors Journal, 2012, 12, 1979-	1986	11
80	Surface soil water content spatial organization within irrigated and non-irrigated agricultural fields. <i>Advances in Water Resources</i> , 2012 , 50, 55-61	4.7	11
79	Residue Management Effects on Water Use and Yield of Deficit Irrigated Corn. <i>Agronomy Journal</i> , 2013 , 105, 1035-1044	2.2	11
78	Residue Management Effects on Water Use and Yield of Deficit Irrigated Cotton. <i>Agronomy Journal</i> , 2013 , 105, 1026-1034	2.2	10
77	Permanent Beds vs. Conventional Tillage in Irrigated Arid Central Asia. <i>Agronomy Journal</i> , 2011 , 103, 1002-1011	2.2	10
76	Comparison of Electrical and Thermal Conductivities for Soils From Five States. <i>Soil Science</i> , 2010 , 175, 573-578	0.9	10
75	Design of Access-Tube TDR Sensor for Soil Water Content: Testing. IEEE Sensors Journal, 2012, 12, 2064-	-4070	9
74	A Field Test of Recursive Calculation of Crop Evapotranspiration. <i>Transactions of the ASABE</i> , 2010 , 53, 1117-1126	0.9	9
73	Remote sensing of contrasting tillage practices in the Texas Panhandle. <i>International Journal of Remote Sensing</i> , 2008 , 29, 3477-3487	3.1	9
72	Lysimetry versus Neutron Moisture Meter for Evapotranspiration Determination in Four Soils. <i>Soil Science Society of America Journal</i> , 2009 , 73, 1693-1698	2.5	9
71	SOIL TEMPERATURE UNDER A DORMANT BERMUDAGRASS MULCH: SIMULATION AND MEASUREMENT. <i>Transactions of the American Society of Agricultural Engineers</i> , 2004 , 47, 91-98		9
70	Effect of Slope and Rainfall Intensity on Erosion from Sodium Dispersed, Compacted Earth Microcatchments. <i>Soil Science Society of America Journal</i> , 1985 , 49, 202-206	2.5	9
69	Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies. <i>International Journal of Phytoremediation</i> , 2011 , 13 Suppl 1, 122-39	3.9	8
68	A Depth Control Stand for Improved Accuracy with the Neutron Probe. <i>Vadose Zone Journal</i> , 2003 , 2, 642	2.7	8
67	Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains. <i>Agricultural Water Management</i> , 2020 , 240, 106273	5.9	8
66	Precision Agriculture and Irrigation: Current U.S. Perspectives. <i>Transactions of the ASABE</i> , 2020 , 63, 57-6	75.9	7

(2016-2019)

65	Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. <i>Environmental Modelling and Software</i> , 2019 , 119, 214-227	5.2	7	
64	Corn and Sorghum ET, E, Yield, and CWP as Affected by Irrigation Application Method: SDI versus Mid-Elevation Spray Irrigation. <i>Transactions of the ASABE</i> , 2019 , 62, 1377-1393	0.9	7	
63	Evapotranspiration of Corn and Forage Sorghum for Silage 2008,		7	
62	USING LOW-COST GPS RECEIVERS FOR DETERMINING FIELD POSITION OF MECHANIZED IRRIGATION SYSTEMS. <i>Applied Engineering in Agriculture</i> , 2005 , 21, 841-845	0.8	7	
61	Contrasting tillage effects on stored soil water, infiltration and evapotranspiration fluxes in a dryland rotation at two locations. <i>Soil and Tillage Research</i> , 2019 , 190, 157-174	6.5	6	
60	Relationships Between Early Wheat Streak Mosaic Severity Levels and Grain Yield: Implications for Management Decisions. <i>Plant Disease</i> , 2017 , 101, 1621-1626	1.5	6	
59	Soil Water and Monitoring Technology. <i>Agronomy</i> , 2015 , 23-84	0.8	6	
58	Response to Comments on IDR Laboratory Calibration in Travel Time, Bulk Electrical Conductivity, and Effective Frequency <i>Vadose Zone Journal</i> , 2006 , 5, 1073-1075	2.7	6	
57	Past, Present, and Future of Irrigation on the U.S. Great Plains. <i>Transactions of the ASABE</i> , 2020 , 63, 703	-729	6	
56	Energy Imbalance and Evapotranspiration Hysteresis Under an Advective Environment: Evidence From Lysimeter, Eddy Covariance, and Energy Balance Modeling. <i>Geophysical Research Letters</i> , 2021 , 48,	4.9	6	
55	Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids. <i>Journal of Integrative Agriculture</i> , 2018 , 17, 1093-1105	3.2	6	
54	Increased Bias in Evapotranspiration Modeling Due to Weather and Vegetation Indices Data Sources. <i>Agronomy Journal</i> , 2019 , 111, 1407-1424	2.2	5	
53	Evaluation of a Landscape-Scale Approach to Cotton Modeling. <i>Agronomy Journal</i> , 2014 , 106, 2263-227	92.2	5	
52	Single- and Dual-Surface Iterative Energy Balance Solutions for Reference ET. <i>Transactions of the ASABE</i> , 2012 , 55, 533-541	0.9	5	
51	Analysis of coaxial soil cell in reflection and transmission. Sensors, 2011, 11, 2592-610	3.8	5	
50	ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part A. Development. <i>Transactions of the ASABE</i> , 2020 , 63, 1521-1533	0.9	5	
49	Quality Management for Research Weather Data: USDA-ARS, Bushland, TX 2018 , 1, 1-18		5	
48	A method to correct eddy covariance flux underestimates under an advective environment for arid or semi-arid regions. <i>Physics and Chemistry of the Earth</i> , 2016 , 96, 2-15	3	4	

47	Perspectives on Global Water Security. <i>Transactions of the ASABE</i> , 2020 , 63, 69-80	0.9	3
46	Calibration and Tests of Commercial Wireless Infrared Thermometers. <i>Applied Engineering in Agriculture</i> , 2018 , 34, 647-658	0.8	3
45	Comments on II. Singh et al., Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil[[Agric. Water Manage. 196 (2018) 87 [28]. Agricultural Water Management, 2018, 203, 236-239	5.9	3
44	A Subsurface Drip Irrigation System for Weighing Lysimetry. <i>Applied Engineering in Agriculture</i> , 2018 , 34, 213-221	0.8	3
43	Design and Field Tests of an Access-Tube Soil Water Sensor. <i>Applied Engineering in Agriculture</i> , 2012 , 28, 603-610	0.8	3
42	Discussion of Boil Moisture Measurements: Comparison of Instrumentation PerformancesIby Ventura Francesca, Facini Osvaldo, Piana Stefano, and Rossi Pisa Paola. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2011 , 137, 466-468	1.1	3
41	Fringe capacitance correction for a coaxial soil cell. <i>Sensors</i> , 2011 , 11, 757-70	3.8	3
40	Are Crop Coefficients for SDI Different from Those for Sprinkler Irrigation Application?. <i>Transactions of the ASABE</i> , 2020 , 63, 1233-1242	0.9	3
39	Response of Drought-Tolerant Corn to Varying Irrigation Levels in the Texas High Plains. <i>Transactions of the ASABE</i> , 2019 , 62, 1365-1375	0.9	3
38	Modeling Evapotranspiration and Crop Growth of Irrigated and Non-Irrigated Corn in the Texas High Plains Using RZWQM. <i>Transactions of the ASABE</i> , 2018 , 61, 1653-1666	0.9	3
37	Targeted, Precision Irrigation for Moving Platforms: Selected Papers from a Center Pivot Technology Transfer Effort. <i>Transactions of the ASABE</i> , 2019 , 62, 1409-1415	0.9	2
36	Comments on II. Vera et al., Soil water balance trial involving capacitance and neutron probe measurements[Agric. Water Manage. 96 (2009) 905B11]. <i>Agricultural Water Management</i> , 2010 , 97, 182-184	5.9	2
35	External Full-Time Vacuum Lysimeter Drainage System. Applied Engineering in Agriculture, 2006, 22, 87	5-880	2
34	Evaluation of a Two-Source Energy Balance Model in an Advective Environment 2006 , 1		2
33	Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. <i>Vadose Zone Journal</i> , 2003 , 2, 530-538	2.7	2
32	Evaluation of a Decision Support System for Variable-Rate Irrigation in a Humid Region. <i>Transactions of the ASABE</i> , 2020 , 63, 1207-1215	0.9	2
31	Theory and Development of a VRI Decision Support System: The USDA-ARS ISSCADA Approach. <i>Transactions of the ASABE</i> , 2020 , 63, 1507-1519	0.9	2
30	A Variable-Rate Irrigation Decision Support System for Corn in the U.S. Eastern Coastal Plain. <i>Transactions of the ASABE</i> , 2020 , 63, 1295-1303	0.9	1

29	Performance of a Wireless Sensor Network for Crop Water Monitoring and Irrigation Control 2012,		1
28	Crop Production Comparison with Spray, LEPA, and Subsurface Drip Irrigation in the Texas High Plains 2010 ,		1
27	Evapotranspiration of Deficit Irrigated Sorghum 2007 , 1		1
26	Shifting the odds of dryland farming: The career of B.A. Stewart. <i>Agronomy Journal</i> , 2020 , 112, 3254-32	26 <u>4</u> .2	1
25	ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part B. Application. <i>Transactions of the ASABE</i> , 2020 , 63, 1535-1547	0.9	1
24	Irrigation Management of Potatoes Using Sensor Feedback: Texas High Plains. <i>Transactions of the ASABE</i> , 2020 , 63, 1259-1276	0.9	1
23	Comparison of Lysimeter-Derived Crop Coefficients for Legacy and Modern Drought-Tolerant Maize Hybrids in the Texas High Plains. <i>Transactions of the ASABE</i> , 2020 , 63, 1243-1257	0.9	1
22	Cotton irrigation scheduling improvements using wetting front detectors in Uzbekistan. <i>Agricultural Water Management</i> , 2021 , 244, 106538	5.9	1
21	Irrigation Management Effects on Crop Water Productivity for Maize Production in the Texas High Plains. <i>Water Conservation Science and Engineering</i> , 2021 , 6, 37-43	1.6	1
20	Water vapor density and turbulent fluxes from three generations of infrared gas analyzers. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 1253-1266	4	1
19	The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains. <i>Agricultural Water Management</i> , 2022 , 262, 107386	5.9	0
18	Solar node and gateway wireless system functions in record breaking polar vortex outbreak of February 2021 2021 , 4, e20193		O
17	Design, Fabrication, and Operation of an In-Situ Microlysimeter for Estimating Soil Water Evaporation. <i>Applied Engineering in Agriculture</i> , 2019 , 35, 301-309	0.8	О
16	DiversityAn Essential Quality for Agronomy. <i>CSA News</i> , 2018 , 63, 16-17	0.1	
15	An Artificial Dry Reference Surface for Predicting Canopy Temperature Dynamics from a Moving Irrigation System 2006 , 1		
14	Lysimetric Evaluation of Single- and Two-source Energy Balance Models for Alfalfa, Grain Sorghum, and Cotton in the Southern High Plains 2005 , 1		
13	Water and Energy Balances at Soil P lantAtmosphere Interfaces 2001 , 127-188		
12	A Depth Control Stand for Improved Accuracy with the Neutron Probe. <i>Vadose Zone Journal</i> , 2003 , 2, 642-649	2.7	

11	Comparison of Stationary and Moving Infrared Thermometer Measurements Aboard a Center Pivot. <i>Applied Engineering in Agriculture</i> , 2019 , 35, 853-866	0.8
10	Preliminary crop coefficients for late planted short-season soybean: Texas High Plains 2021 , 4, e20177	
9	Does It Matter What We Call It?. CSA News, 2018, 63, 16-17	0.1
8	Our Science Matters and Is Recognized. <i>CSA News</i> , 2018 , 63, 18-19	0.1
7	The Wendell Irrigationist. <i>CSA News</i> , 2018 , 63, 16-17	0.1
6	Transitions (Dpportunities for Growth, Renewal, and Gratitude. <i>CSA News</i> , 2018 , 63, 14-15	0.1
5	International Cooperation Strengthens All People. CSA News, 2018, 63, 16-17	0.1
4	Lessons Learned from Planting Trees. <i>CSA News</i> , 2018 , 63, 26-26	0.1
3	Happy Trails B ridges to the Future. <i>CSA News</i> , 2018 , 63, 24-25	0.1
2	Focus on Precision Conservation. <i>CSA News</i> , 2018 , 63, 19-19	0.1
1	The Importance of Precision Water Management for Sustainability. CSA News, 2018, 63, 37-37	0.1