Steven Evett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817379/publications.pdf

Version: 2024-02-01

199 papers 7,397 citations

41258 49 h-index 77 g-index

201 all docs

201 docs citations

times ranked

201

5071 citing authors

#	Article	IF	CITATIONS
1	Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agronomy Journal, 2009, 101, 488-498.	0.9	300
2	ET mapping for agricultural water management: present status and challenges. Irrigation Science, 2008, 26, 223-237.	1.3	296
3	Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone Journal, 2006, 5, 894-907.	1.3	197
4	Precision of Neutron Scattering and Capacitance Type Soil Water Content Gauges from Field Calibration. Soil Science Society of America Journal, 1995, 59, 961-968.	1.2	179
5	Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management, 2007, 90, 112-120.	2.4	169
6	The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agricultural and Forest Meteorology, 2000, 103, 335-348.	1.9	162
7	Evapotranspiration of Full-, Deficit-Irrigated, and Dryland Cotton on the Northern Texas High Plains. Journal of Irrigation and Drainage Engineering - ASCE, 2004, 130, 277-285.	0.6	154
8	Evapotranspiration, Yield, and Water Use Efficiency of Corn Hybrids Differing in Maturity. Agronomy Journal, 1998, 90, 3-9.	0.9	153
9	Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: evidence of accelerated overland flow generation. Journal of Hydrology, 2004, 287, 124-146.	2.3	150
10	Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources, 2012, 50, 134-151.	1.7	148
11	Soil Material, Temperature, and Salinity Effects on Calibration of Multisensor Capacitance Probes. Soil Science Society of America Journal, 2000, 64, 1940-1946.	1.2	135
12	Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET?. Advances in Water Resources, 2012, 50, 79-90.	1.7	124
13	Soil water sensing for water balance, ET and WUE. Agricultural Water Management, 2012, 104, 1-9.	2.4	119
14	Soil hydraulic properties of cropland compared with reestablished and native grassland. Geoderma, 2003, 116, 47-60.	2.3	115
15	Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign. Advances in Water Resources, 2012, 50, 162-177.	1.7	111
16	Soil Profile Water Content Determination: Spatiotemporal Variability of Electromagnetic and Neutron Probe Sensors in Access Tubes. Vadose Zone Journal, 2009, 8, 926-941.	1.3	110
17	A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management, 2012, 107, 122-132.	2.4	108
18	Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agricultural Water Management, 2010, 97, 1310-1316.	2.4	107

#	Article	IF	CITATIONS
19	Advances in Soil Water Content Sensing: The Continuing Maturation of Technology and Theory. Vadose Zone Journal, 2005, 4, 986-991.	1.3	101
20	Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agricultural Water Management, 2015, 159, 123-138.	2.4	100
21	Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 2011, 98, 1523-1535.	2.4	99
22	Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales. Advances in Water Resources, 2012, 50, 4-19.	1.7	99
23	SEASONAL AND MAXIMUM DAILY EVAPOTRANSPIRATION OF IRRIGATED WINTER WHEAT, SORGHUM, AND CORN — SOUTHERN HIGH PLAINS. Transactions of the American Society of Agricultural Engineers, 1997, 40, 623-634.	0.9	94
24	Comparison of Five Models to Scale Daily Evapotranspiration from One-Time-of-Day Measurements. Transactions of the ASABE, 2006, 49, 1409-1417.	1.1	94
25	SUBSURFACE AND SURFACE MICROIRRIGATION OF CORN —SOUTHERN HIGH PLAINS. Transactions of the American Society of Agricultural Engineers, 1997, 40, 635-641.	0.9	90
26	Time Domain Reflectometry Laboratory Calibration in Travel Time, Bulk Electrical Conductivity, and Effective Frequency. Vadose Zone Journal, 2005, 4, 1020-1029.	1.3	89
27	Canopy Temperature Depression Sampling to Assess Grain Yield and Genotypic Differentiation in Winter Wheat. Crop Science, 2007, 47, 1518-1529.	0.8	89
28	Morphological and Physiological Traits Associated with Canopy Temperature Depression in Three Closely Related Wheat Lines. Crop Science, 2008, 48, 1897-1910.	0.8	85
29	On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions. Advances in Water Resources, 2012, 50, 62-78.	1.7	81
30	Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Advances in Water Resources, 2012, 50, 20-30.	1.7	81
31	Automation of a Center Pivot Using the Temperature-Time-Threshold Method of Irrigation Scheduling. Journal of Irrigation and Drainage Engineering - ASCE, 2008, 134, 286-291.	0.6	80
32	Wall Material and Capping Effects on Microlysimeter Temperatures and Evaporation. Soil Science Society of America Journal, 1995, 59, 329-336.	1.2	77
33	Remote Sensing Based Energy Balance Algorithms for Mapping ET: Current Status and Future Challenges. Transactions of the ASABE, 2007, 50, 1639-1644.	1.1	76
34	Evapotranspiration of Irrigated Winter Wheat $\hat{A}-$ Southern High Plains. Transactions of the American Society of Agricultural Engineers, 1995, 38, 745-759.	0.9	73
35	Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 2012, 50, 41-54.	1.7	72
36	Nighttime Evapotranspiration from Alfalfa and Cotton in a Semiarid Climate. Agronomy Journal, 2006, 98, 730-736.	0.9	67

#	Article	IF	CITATIONS
37	Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area. Advances in Water Resources, 2012, 50, 120-133.	1.7	66
38	THE TACQ COMPUTER PROGRAM FOR AUTOMATIC TIME DOMAIN REFLECTOMETRY MEASUREMENTS: II. WAVEFORM INTERPRETATION METHODS. Transactions of the American Society of Agricultural Engineers, 2000, 43, 1947-1956.	0.9	65
39	Complex Permittivity Model for Time Domain Reflectometry Soil Water Content Sensing: I. Theory. Soil Science Society of America Journal, 2009, 73, 886-897.	1.2	64
40	Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach. Advances in Water Resources, 2012, 50, 152-161.	1.7	64
41	Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 2016, 540, 574-587.	2.3	64
42	A Depth Control Stand for Improved Accuracy with the Neutron Probe. Vadose Zone Journal, 2003, 2, 642-649.	1.3	62
43	Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agricultural Water Management, 2016, 177, 274-283.	2.4	61
44	Evapotranspiration and Yield of Corn Grown on Three High Plains Soils. Agronomy Journal, 1998, 90, 447-454.	0.9	60
45	COMPARISON OF SDI, LEPA, AND SPRAY IRRIGATION PERFORMANCE FOR GRAIN SORGHUM. Transactions of the American Society of Agricultural Engineers, 2004, 47, 1477-1492.	0.9	58
46	ENWATBAL.BAS: a Mechanistic Evapotranspiration Model Written in Compiled Basic. Agronomy Journal, 1993, 85, 763-772.	0.9	57
47	The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAPâ€MOISST): Testbed Design and Evaluation of In Situ Sensors. Vadose Zone Journal, 2016, 15, 1-11.	1.3	55
48	Introduction: Can Water Use Efficiency Be Modeled Well Enough to Impact Crop Management?. Agronomy Journal, 2009, 101, 423-425.	0.9	53
49	Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Research, 2018, 216, 1-9.	2.3	53
50	THE TACQ COMPUTER PROGRAM FOR AUTOMATIC TIME DOMAIN REFLECTOMETRY MEASUREMENTS: I. DESIGN AND OPERATING CHARACTERISTICS. Transactions of the American Society of Agricultural Engineers, 2000, 43, 1939-1946.	0.9	52
51	Advection Influences on Evapotranspiration of Alfalfa in a Semiarid Climate. Agronomy Journal, 2006, 98, 1646-1654.	0.9	52
52	Modeling Diurnal Canopy Temperature Dynamics Using Oneâ€Timeâ€ofâ€Day Measurements and a Reference Temperature Curve. Agronomy Journal, 2004, 96, 1553-1561.	0.9	49
53	Evaluation of a wireless infrared thermometer with a narrow field of view. Computers and Electronics in Agriculture, 2011, 76, 59-68.	3.7	48
54	Identifying Advantages and Disadvantages of Variable Rate Irrigation: An Updated Review. Applied Engineering in Agriculture, 2019, 35, 837-852.	0.3	43

#	Article	IF	Citations
55	Estimating Hydraulic Properties of a Fineâ€textured Soil Using a Disc Infiltrometer. Soil Science Society of America Journal, 2002, 66, 1409-1423.	1.2	41
56	Radiation Model for Row Crops: I. Geometric View Factors and Parameter Optimization. Agronomy Journal, 2012, 104, 225-240.	0.9	41
57	Effects of <i>Wheat streak mosaic virus</i> on Root Development and Water-Use Efficiency of Hard Red Winter Wheat. Plant Disease, 2010, 94, 766-770.	0.7	38
58	Evaluation of a Directâ€Coupled Timeâ€Domain Reflectometry for Determination of Soil Water Content and Bulk Electrical Conductivity. Vadose Zone Journal, 2016, 15, 1-8.	1.3	37
59	Developing Wireless Sensor Networks for Monitoring Crop Canopy Temperature Using a Moving Sprinkler System as a Platform. Applied Engineering in Agriculture, 2010, 26, 331-341.	0.3	36
60	Field Calibration Accuracy and Utility of Four Downâ€Hole Water Content Sensors. Vadose Zone Journal, 2008, 7, 992-1000.	1.3	35
61	The Bushland Weighing Lysimeters: A Quarter Century of Crop ET Investigations to Advance Sustainable Irrigation. Transactions of the ASABE, 2016, 59, 163-179.	1.1	35
62	Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters. Agronomy, 2019, 9, 99.	1.3	35
63	ASIMPLIFIED WEIGHING LYSIMETER FOR MONOLITHIC OR RECONSTRUCTED SOILS. Applied Engineering in Agriculture, 1998, 14, 267-273.	0.3	33
64	Complex Permittivity Model for Time Domain Reflectometry Soil Water Content Sensing: II. Calibration. Soil Science Society of America Journal, 2009, 73, 898-909.	1.2	33
65	Irrigation challenges in the sub-humid US Mid-South. International Journal of Water, 2014, 8, 259.	0.1	33
66	Calibration and Validation of the SWAT Model for Predicting Daily ET over Irrigated Crops in the Texas High Plains Using Lysimetric Data. Transactions of the ASABE, 2016, 59, 611-622.	1.1	32
67	Using an integrated crop water stress index for irrigation scheduling of two corn hybrids in a semi-arid region. Irrigation Science, 2017, 35, 451-467.	1.3	32
68	Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains. Agricultural Water Management, 2015, 162, 33-46.	2.4	31
69	Estimating Evapotranspiration for Dryland Cropping Systems in the Semiarid Texas High Plains Using <scp>SWAT</scp> . Journal of the American Water Resources Association, 2016, 52, 298-314.	1.0	31
70	Crop evapotranspiration calculation using infrared thermometers aboard center pivots. Agricultural Water Management, 2017, 187, 173-189.	2.4	31
71	COAXIAL MULTIPLEXER FOR TIME DOMAIN REFLECTOMETRY MEASUREMENT OF SOILWATER CONTENT AND BULK ELECTRICAL CONDUCTIVITY. Transactions of the American Society of Agricultural Engineers, 1998, 41, 361-369.	0.9	29
72	Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment. Field Crops Research, 2016, 186, 66-77.	2.3	29

#	Article	IF	Citations
7 3	Hydra Probe and Twelveâ€Wire Probe Comparisons in Fluids and Soil Cores. Soil Science Society of America Journal, 2010, 74, 5-12.	1.2	28
74	Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity. Agricultural Water Management, 2009, 96, 167-178.	2.4	27
7 5	Lower Limits of Crop Water Use in Three Soil Textural Classes. Soil Science Society of America Journal, 2012, 76, 607-616.	1.2	27
76	Crop response of drought-tolerant and conventional maize hybrids in a semiarid environment. Irrigation Science, 2016, 34, 231-244.	1.3	27
77	Past, Present, and Future of Irrigation on the U.S. Great Plains. Transactions of the ASABE, 2020, 63, 703-729.	1.1	27
78	Energy Balance Model of Spatially Variable Evaporation from Bare Soil. Soil Science Society of America Journal, 1994, 58, 1604-1611.	1,2	26
79	Spatial and Temporal Analysis of Crop Conditions Using Multiple Canopy Temperature Maps Created with Center-Pivot-Mounted Infrared Thermometers. Transactions of the ASABE, 2007, 50, 919-927.	1.1	26
80	Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. Advances in Water Resources, 2012, 50, 91-105.	1.7	26
81	Crop Coefficients Developed at Bushland, Texas for Corn, Wheat, Sorghum, Soybean, Cotton, and Alfalfa. , 2006, , .		25
82	Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter. Sensors, 2017, 17, 2350.	2.1	24
83	Resolving discrepancies between laboratory-determined field capacity values and field water content observations: implications for irrigation management. Irrigation Science, 2019, 37, 751-759.	1.3	24
84	Measured and Simulated Surface Soil Drying. Agronomy Journal, 1995, 87, 235-244.	0.9	23
85	Opportunities for Woody Crop Production Using Treated Wastewater in Egypt. I. Afforestation Strategies. International Journal of Phytoremediation, 2011, 13, 102-121.	1.7	23
86	Grain Sorghum Response to Irrigation Scheduling with the Time-Temperature Threshold Method and Deficit Irrigation Levels. Transactions of the ASABE, 2012, 55, 451-461.	1.1	23
87	Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat. Sensors, 2014, 14, 17753-17769.	2.1	23
88	Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters. Agricultural Water Management, 2016, 169, 115-128.	2.4	21
89	Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 2016, 216, 115-128.	1.9	21
90	SOIL TEMPERATURE AND WATER EVAPORATION OF SMALL STEEL AND PLASTIC LYSIMETERS REPLACED DAILY. Soil Science, 2000, 165, 890-895.	0.9	21

#	Article	IF	Citations
91	Intercomparison of Nine Micrometeorological Stations during the BEAREX08 Field Campaign. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1390-1406.	0.5	20
92	Soil heat flux variability influenced by row direction in irrigated cotton. Advances in Water Resources, 2012, 50, 31-40.	1.7	20
93	Radiation Model for Row Crops: II. Model Evaluation. Agronomy Journal, 2012, 104, 241-255.	0.9	20
94	Soil Water and Monitoring Technology. Agronomy, 0, , 23-84.	0.2	20
95	Simulating Evapotranspiration and Yield Response of Selected Corn Varieties under Full and Limited Irrigation in the Texas High Plains Using DSSAT-CERES-Maize. Transactions of the ASABE, 2017, 60, 837-846.	1.1	20
96	Heat storage and its effect on the surface energy balance closure under advective conditions. Agricultural and Forest Meteorology, 2019, 265, 56-69.	1.9	20
97	Length and Slope Effects on Runoff from Sodium Dispersed, Compacted Earth Microcatchments. Soil Science Society of America Journal, 1985, 49, 734-738.	1.2	19
98	Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids. Journal of Integrative Agriculture, 2018, 17, 1093-1105.	1.7	19
99	SOIL TEMPERATURE UNDER A DORMANT BERMUDAGRASS MULCH: SIMULATION AND MEASUREMENT. Transactions of the American Society of Agricultural Engineers, 2004, 47, 91-98.	0.9	18
100	Comparison of aerodynamic and radiometric surface temperature using precision weighing lysimeters. , 2004, , .		18
101	A Weighing Lysimeter for Crop Water Use Determination in the Jordan Valley, Jordan. Transactions of the ASABE, 2009, 52, 155-169.	1.1	18
102	Radiometer Footprint Model to Estimate Sunlit and Shaded Components for Row Crops. Agronomy Journal, 2010, 102, 942-955.	0.9	18
103	Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08. Advances in Water Resources, 2012, 50, 106-119.	1.7	18
104	Two-Source Energy Balance Model: Refinements and Lysimeter Tests in the Southern High Plains. Transactions of the ASABE, 2012, 55, 551-562.	1.1	18
105	Quantifying variability in field-scale evapotranspiration measurements in an irrigated agricultural region under advection. Irrigation Science, 2015, 33, 325-338.	1.3	18
106	Allometric Method to Estimate Leaf Area Index for Row Crops. Agronomy Journal, 2017, 109, 883-894.	0.9	18
107	Precision Agriculture and Irrigation: Current U.S. Perspectives. Transactions of the ASABE, 2020, 63, 57-67.	1.1	18
108	Energy Imbalance and Evapotranspiration Hysteresis Under an Advective Environment: Evidence From Lysimeter, Eddy Covariance, and Energy Balance Modeling. Geophysical Research Letters, 2021, 48, .	1.5	18

#	Article	IF	Citations
109	Corn and Sorghum ET, E, Yield, and CWP as Affected by Irrigation Application Method: SDI versus Mid-Elevation Spray Irrigation. Transactions of the ASABE, 2019, 62, 1377-1393.	1.1	17
110	Climatic influence on residue decomposition prediction in the Wind Erosion Prediction System. Theoretical and Applied Climatology, 1996, 54, 5-16.	1.3	16
111	Grain sorghum growth, water use, and yield in contrasting soils. Agricultural Water Management, 1997, 35, 29-42.	2.4	16
112	AN EVAPOTRANSPIRATION RESEARCH FACILITY FOR SOIL-PLANT-ENVIRONMENT INTERACTIONS. Applied Engineering in Agriculture, 2005, 21, 993-998.	0.3	16
113	Neutron Moisture Meter Calibration in Six Soils of Uzbekistan Affected by Carbonate Accumulation. Vadose Zone Journal, 2007, 6, 406-412.	1.3	16
114	Residue Management Effects on Water Use and Yield of Deficit Irrigated Cotton. Agronomy Journal, 2013, 105, 1026-1034.	0.9	16
115	Advances in a Two-Source Energy Balance Model: Partitioning of Evaporation and Transpiration for Cotton. Transactions of the ASABE, 2016, 59, 181-197.	1.1	16
116	Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains. Agricultural Water Management, 2020, 240, 106273.	2.4	16
117	Remote sensing of contrasting tillage practices in the Texas Panhandle. International Journal of Remote Sensing, 2008, 29, 3477-3487.	1.3	14
118	Permanent Beds vs. Conventional Tillage in Irrigated Arid Central Asia. Agronomy Journal, 2011, 103, 1002-1011.	0.9	14
119	Soil heat flux calculation for sunlit and shaded surfaces under row crops: 2. Model test. Agricultural and Forest Meteorology, 2016, 216, 129-140.	1.9	14
120	ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part A. Development. Transactions of the ASABE, 2020, 63, 1521-1533.	1.1	14
121	Evapotranspiration of Corn and Forage Sorghum for Silage. , 2008, , .		13
122	A Field Test of Recursive Calculation of Crop Evapotranspiration. Transactions of the ASABE, 2010, 53, 1117-1126.	1.1	13
123	Design of Access-Tube TDR Sensor for Soil Water Content: Theory. IEEE Sensors Journal, 2012, 12, 1979-1986.	2.4	13
124	Perspectives on Global Water Security. Transactions of the ASABE, 2020, 63, 69-80.	1.1	13
125	Comparison of Electrical and Thermal Conductivities for Soils From Five States. Soil Science, 2010, 175, 573-578.	0.9	12
126	Design of Access-Tube TDR Sensor for Soil Water Content: Testing. IEEE Sensors Journal, 2012, 12, 2064-2070.	2.4	12

#	Article	IF	CITATIONS
127	Surface soil water content spatial organization within irrigated and non-irrigated agricultural fields. Advances in Water Resources, 2012, 50, 55-61.	1.7	12
128	Fieldâ€Measured, Hourly Soil Water Evaporation Stages in Relation to Reference Evapotranspiration Rate and Soil to Air Temperature Ratio. Vadose Zone Journal, 2015, 14, 1-14.	1.3	12
129	USING LOW-COST GPS RECEIVERS FOR DETERMINING FIELD POSITION OF MECHANIZED IRRIGATION SYSTEMS. Applied Engineering in Agriculture, 2005, 21, 841-845.	0.3	11
130	Lysimetry versus Neutron Moisture Meter for Evapotranspiration Determination in Four Soils. Soil Science Society of America Journal, 2009, 73, 1693-1698.	1.2	11
131	Residue Management Effects on Water Use and Yield of Deficit Irrigated Corn. Agronomy Journal, 2013, 105, 1035-1044.	0.9	11
132	Quality Management for Research Weather Data: USDAâ€ARS, Bushland, TX. , 2018, 1, 1-18.		11
133	A Variable-Rate Irrigation Decision Support System for Corn in the U.S. Eastern Coastal Plain. Transactions of the ASABE, 2020, 63, 1295-1303.	1.1	11
134	Calibration and Tests of Commercial Wireless Infrared Thermometers. Applied Engineering in Agriculture, 2018, 34, 647-658.	0.3	10
135	Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling and Software, 2019, 119, 214-227.	1.9	10
136	Theory and Development of a VRI Decision Support System: The USDA-ARS ISSCADA Approach. Transactions of the ASABE, 2020, 63, 1507-1519.	1.1	10
137	A Depth Control Stand for Improved Accuracy with the Neutron Probe. Vadose Zone Journal, 2003, 2, 642-649.	1.3	10
138	Effect of Slope and Rainfall Intensity on Erosion from Sodium Dispersed, Compacted Earth Microcatchments. Soil Science Society of America Journal, 1985, 49, 202-206.	1.2	9
139	Opportunities for Woody Crop Production Using Treated Wastewater in Egypt. II. Irrigation Strategies. International Journal of Phytoremediation, 2011, 13, 122-139.	1.7	9
140	A Subsurface Drip Irrigation System for Weighing Lysimetry. Applied Engineering in Agriculture, 2018, 34, 213-221.	0.3	9
141	Contrasting tillage effects on stored soil water, infiltration and evapotranspiration fluxes in a dryland rotation at two locations. Soil and Tillage Research, 2019, 190, 157-174.	2.6	9
142	Evaluation of a Decision Support System for Variable-Rate Irrigation in a Humid Region. Transactions of the ASABE, 2020, 63, 1207-1215.	1.1	9
143	A Depth Control Stand for Improved Accuracy with the Neutron Probe. Vadose Zone Journal, 2003, 2, 642.	1.3	9
144	Relationships Between Early Wheat Streak Mosaic Severity Levels and Grain Yield: Implications for Management Decisions. Plant Disease, 2017, 101, 1621-1626.	0.7	8

#	Article	IF	Citations
145	Response of Drought-Tolerant Corn to Varying Irrigation Levels in the Texas High Plains. Transactions of the ASABE, 2019, 62, 1365-1375.	1.1	8
146	ARSPivot, A Sensor-Based Decision Support Software for Variable-Rate Irrigation Center Pivot Systems: Part B. Application. Transactions of the ASABE, 2020, 63, 1535-1547.	1.1	8
147	Are Crop Coefficients for SDI Different from Those for Sprinkler Irrigation Application?. Transactions of the ASABE, 2020, 63, 1233-1242.	1.1	7
148	Cotton irrigation scheduling improvements using wetting front detectors in Uzbekistan. Agricultural Water Management, 2021, 244, 106538.	2.4	7
149	Response to "Comments on â€~TDR Laboratory Calibration in Travel Time, Bulk Electrical Conductivity, and Effective Frequency'― Vadose Zone Journal, 2006, 5, 1073-1075.	1.3	7
150	Crop Production Comparison with Spray, LEPA, and Subsurface Drip Irrigation in the Texas High Plains. , $2010, , .$		6
151	Evaluation of a Landscape-Scale Approach to Cotton Modeling. Agronomy Journal, 2014, 106, 2263-2279.	0.9	6
152	Increased Bias in Evapotranspiration Modeling Due to Weather and Vegetation Indices Data Sources. Agronomy Journal, 2019, 111, 1407-1424.	0.9	6
153	Irrigation Management of Potatoes Using Sensor Feedback: Texas High Plains. Transactions of the ASABE, 2020, 63, 1259-1276.	1.1	6
154	The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains. Agricultural Water Management, 2022, 262, 107386.	2.4	6
155	Analysis of Coaxial Soil Cell in Reflection and Transmission. Sensors, 2011, 11, 2592-2610.	2.1	5
156	Design and Field Tests of an Access-Tube Soil Water Sensor. Applied Engineering in Agriculture, 2012, 28, 603-610.	0.3	5
157	Single- and Dual-Surface Iterative Energy Balance Solutions for Reference ET. Transactions of the ASABE, 2012, 55, 533-541.	1.1	5
158	Modeling Evapotranspiration and Crop Growth of Irrigated and Non-Irrigated Corn in the Texas High Plains Using RZWQM. Transactions of the ASABE, 2018, 61, 1653-1666.	1.1	5
159	Water and Energy Balances at Soil–Plant–Atmosphere Interfaces. , 2001, , 127-188.		5
160	External Full-Time Vacuum Lysimeter Drainage System. Applied Engineering in Agriculture, 2006, 22, 875-880.	0.3	4
161	Fringe Capacitance Correction for a Coaxial Soil Cell. Sensors, 2011, 11, 757-770.	2.1	4
162	A method to correct eddy covariance flux underestimates under an advective environment for arid or semi-arid regions. Physics and Chemistry of the Earth, 2016, 96, 2-15.	1,2	4

#	Article	IF	Citations
163	Comments on "J. Singh et al., Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil―[Agric. Water Manage. 196 (2018) 87–98]. Agricultural Water Management, 2018, 203, 236-239.	2.4	4
164	Targeted, Precision Irrigation for Moving Platforms: Selected Papers from a Center Pivot Technology Transfer Effort. Transactions of the ASABE, 2019, 62, 1409-1415.	1.1	4
165	Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. Vadose Zone Journal, 2003, 2, 530-538.	1.3	4
166	Comments on "J. Vera et al., Soil water balance trial involving capacitance and neutron probe measurements―[Agric. Water Manage. 96 (2009) 905–911]. Agricultural Water Management, 2010, 97, 182-184.	2.4	3
167	Discussion of "Soil Moisture Measurements: Comparison of Instrumentation Performances―by Ventura Francesca, Facini Osvaldo, Piana Stefano, and Rossi Pisa Paola. Journal of Irrigation and Drainage Engineering - ASCE, 2011, 137, 466-468.	0.6	3
168	Comparison of Stationary and Moving Infrared Thermometer Measurements Aboard a Center Pivot. Applied Engineering in Agriculture, 2019, 35, 853-866.	0.3	3
169	Comparison of Lysimeter-Derived Crop Coefficients for Legacy and Modern Drought-Tolerant Maize Hybrids in the Texas High Plains. Transactions of the ASABE, 2020, 63, 1243-1257.	1.1	3
170	Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. Vadose Zone Journal, 2003, 2, 530.	1.3	3
171	Gatewayâ€node wireless data collection system for environmental sensing. , 2021, 4, .		3
172	Evaluation of a Two-Source Energy Balance Model in an Advective Environment., 2006, , 1.		2
173	Performance of a Wireless Sensor Network for Crop Water Monitoring and Irrigation Control. , 2012, , .		2
174	Design, Fabrication, and Operation of an In-Situ Microlysimeter for Estimating Soil Water Evaporation. Applied Engineering in Agriculture, 2019, 35, 301-309.	0.3	2
175	Irrigation Management Effects on Crop Water Productivity for Maize Production in the Texas High Plains. Water Conservation Science and Engineering, 2021, 6, 37-43.	0.9	2
176	Water vapor density and turbulent fluxes from three generations of infrared gas analyzers. Atmospheric Measurement Techniques, 2021, 14, 1253-1266.	1.2	2
177	Solar node and gateway wireless system functions in record breaking polar vortex outbreak of February 2021., 2021, 4, e20193.		2
178	Reference Evapotranspiration of Grass â€" Southern High Plains. , 2005, , 1.		1
179	Lysimetric Evaluation of Single- and Two-source Energy Balance Models for Alfalfa, Grain Sorghum, and Cotton in the Southern High Plains. , 2005, , 1.		1
180	Evapotranspiration of Deficit Irrigated Sorghum. , 2007, , 1.		1

#	Article	IF	CITATIONS
181	Shifting the odds of dryland farming: The career of B.A. Stewart. Agronomy Journal, 2020, 112, 3254-3264.	0.9	1
182	Irrigation Management. Encyclopedia of Earth Sciences Series, 2014, , 291-302.	0.1	1
183	Crop-water-simulation models in practice, selected papers of the 2nd workshop on crop-water-models held at the occasion of the 15th congress of the international commission on irrigation and drainage (ICID), The Hague, The Netherlands, 1993. Agricultural Water Management, 1997, 33, 83-84.	2.4	0
184	An Artificial Dry Reference Surface for Predicting Canopy Temperature Dynamics from a Moving Irrigation System. , 2006, , 1.		0
185	Two Source Energy Balance Model - Refinements and Lysimeter Tests in the Southern High Plains. , 2010, , .		0
186	Does It Matter What We Call It?. CSA News, 2018, 63, 16-17.	0.1	0
187	Our Science Matters-and Is Recognized. CSA News, 2018, 63, 18-19.	0.1	0
188	The Wendell Irrigationist. CSA News, 2018, 63, 16-17.	0.1	0
189	Transitionsâ€"Opportunities for Growth, Renewal, and Gratitude. CSA News, 2018, 63, 14-15.	0.1	0
190	International Cooperation Strengthens All People. CSA News, 2018, 63, 16-17.	0.1	0
191	Lessons Learned from Planting Trees. CSA News, 2018, 63, 26-26.	0.1	0
192	Happy Trails-Bridges to the Future. CSA News, 2018, 63, 24-25.	0.1	0
193	Focus on Precision Conservation. CSA News, 2018, 63, 19-19.	0.1	0
194	The Importance of Precision Water Management for Sustainability. CSA News, 2018, 63, 37-37.	0.1	0
195	Diversity-An Essential Quality for Agronomy. CSA News, 2018, 63, 16-17.	0.1	0
196	Preliminary crop coefficients for late planted shortâ€season soybean: Texas High Plains. , 2021, 4, e20177.		0
197	Water Use in Crop Production Vadose Zone Journal, 2002, 1, 204-206.	1.3	0
198	Surface Aerodynamic Temperature Derived from Wind/Temperature Profile Measurements over Cotton and Alfalfa in a Semi-Arid Environment. , 2010, , .		0

ARTICLE IF CITATIONS

199 Soil water sensing by neutron scattering., 2022,,... 0