Pierre-Luc Germain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817297/publications.pdf

Version: 2024-02-01

38 papers 2,656 citations

331259 21 h-index 377514 34 g-index

57 all docs 57 docs citations

57 times ranked 4383 citing authors

#	Article	IF	CITATIONS
1	From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 2022, 375, eabe8244.	6.0	129
2	MicroRNA-138 controls hippocampal interneuron function and short-term memory in mice. ELife, 2022, 11 , .	2.8	14
3	Multiomic profiling of the acute stress response in the mouse hippocampus. Nature Communications, 2022, 13, 1824.	5.8	32
4	scanMiR: a biochemically based toolkit for versatile and efficient microRNA target prediction. Bioinformatics, 2022, 38, 2466-2473.	1.8	15
5	<i>enrichMiR</i> predicts functionally relevant microRNAs based on target collections. Nucleic Acids Research, 2022, 50, W280-W289.	6.5	5
6	A relic of design: against proper functions in biology. Biology and Philosophy, 2022, 37, .	0.7	2
7	Streamlining differential exon and 3′ UTR usage with diffUTR. BMC Bioinformatics, 2021, 22, 189.	1.2	5
8	treeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses. Genome Biology, 2021, 22, 157.	3.8	7
9	The Acute Stress Response in the Multiomic Era. Biological Psychiatry, 2021, 89, 1116-1126.	0.7	29
10	Pervasive compartmentâ€specific regulation of gene expression during homeostatic synaptic scaling. EMBO Reports, 2021, 22, e52094.	2.0	13
11	Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Molecular Psychiatry, 2020, 25, 2162-2174.	4.1	130
12	muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nature Communications, 2020, 11, 6077.	5.8	223
13	pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools. Genome Biology, 2020, 21, 227.	3.8	61
14	Isoformâ€resolved correlation analysis between <scp>mRNA</scp> abundance regulation and protein level degradation. Molecular Systems Biology, 2020, 16, e9170.	3.2	42
15	A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents. Nature Protocols, 2020, 15, 2301-2320.	5.5	46
16	Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO Journal, 2020, 39, e104579.	3.5	28
17	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 2019, 37, 314-322.	9.4	254
18	Dosage analysis of the $7q11.23$ Williams region identifies <i>BAZ1B</i> as a major human gene patterning the modern human face and underlying self-domestication. Science Advances, 2019, 5, eaaw7908.	4.7	67

#	Article	IF	Citations
19	Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress, 2018, 21, 443-452.	0.8	280
20	KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes. Cell Reports, 2018, 25, 988-1001.	2.9	28
21	YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. American Journal of Human Genetics, 2017, 100, 907-925.	2.6	125
22	Metastasis as supra-cellular selection? A reply to Lean and Plutynski. Biology and Philosophy, 2017, 32, 281-287.	0.7	9
23	Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nature Communications, 2017, 8, 1212.	5.8	112
24	Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling. Stem Cell Reports, 2017, 8, 1784-1796.	2.3	86
25	The European politics of animal experimentation: From Victorian Britain to â€~Stop Vivisection'. Studies in History and Philosophy of Biological and Biomedical Sciences, 2017, 64, 75-87.	0.8	16
26	RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods. Nucleic Acids Research, 2016, 44, 5054-5067.	6.5	48
27	7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nature Genetics, 2015, 47, 132-141.	9.4	108
28	From replica to instruments: animal models in biomedical research. History and Philosophy of the Life Sciences, 2014, 36, 114-128.	0.6	7
29	Junk or functional DNA? ENCODE and the function controversy. Biology and Philosophy, 2014, 29, 807-831.	0.7	38
30	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2014, 124, 1869-1869.	3.9	1
31	Living Instruments and Theoretical Terms: Xenografts as Measurements in Cancer Research. , 2014, , 141-155.		0
32	What mechanisms can't do: Explanatory frameworks and the function of the p53 gene in molecular oncology. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 374-384.	0.8	8
33	Cell Reprogramming Requires Silencing of a Core Subset of Polycomb Targets. PLoS Genetics, 2013, 9, e1003292.	1.5	59
34	hLGDB: a database of human lysosomal genes and their regulation. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat024.	1.4	48
35	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2013, 123, 5009-5022.	3.9	215
36	Cancer cells and adaptive explanations. Biology and Philosophy, 2012, 27, 785-810.	0.7	28

#	Article	IF	CITATIONS
37	Doublet identification in single-cell sequencing data using scDblFinder. F1000Research, 0, 10, 979.	0.8	179
38	Doublet identification in single-cell sequencing data using scDblFinder. F1000Research, 0, 10, 979.	0.8	91