Vito M Butardo Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817209/publications.pdf

Version: 2024-02-01

27 papers 1,309 citations

430442 18 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

1258 citing authors

#	Article	IF	CITATIONS
1	Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany, 2011, 62, 4927-4941.	2.4	201
2	Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. Journal of Experimental Botany, 2015, 66, 1737-1748.	2.4	164
3	Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science and Technology, 2019, 88, 10-22.	7.8	107
4	Is there a second fragrance gene in rice?. Plant Biotechnology Journal, 2008, 6, 416-423.	4.1	105
5	Rice starch granule amylolysis – Differentiating effects of particle size, morphology, thermal properties and crystalline polymorph. Carbohydrate Polymers, 2015, 115, 305-316.	5.1	92
6	Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis. Plant Physiology, 2017, 173, 887-906.	2.3	71
7	Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination. Scientific Reports, 2017, 7, 5854.	1.6	58
8	Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals. International Review of Cell and Molecular Biology, 2016, 323, 31-70.	1.6	56
9	Integrating a genomeâ€wide association study with a largeâ€scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnology Journal, 2019, 17, 1261-1275.	4.1	56
10	Environmental Factors that Affect the Ability of Amylose to Contribute to Retrogradation in Gels Made from Rice Flour. Journal of Agricultural and Food Chemistry, 2006, 54, 5182-5190.	2.4	48
11	Production of high oleic rice grains by suppressing the expression of the OsFAD2-1 gene. Functional Plant Biology, 2013, 40, 996.	1.1	48
12	Biomolecular Analyses of Starch and Starch Granule Proteins in the High-Amylose Rice Mutant Goami 2. Journal of Agricultural and Food Chemistry, 2012, 60, 11576-11585.	2.4	46
13	The different effects of starch synthase lla mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theoretical and Applied Genetics, 2015, 128. 1407-1419.	1.8	39
14	Balancing the doubleâ€edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms. Plant Biotechnology Journal, 2020, 18, 1763-1777.	4.1	36
15	Improving Rice Grain Quality: State-of-the-Art and Future Prospects. Methods in Molecular Biology, 2019, 1892, 19-55.	0.4	35
16	Dissecting the genome-wide genetic variants of milling and appearance quality traits in rice. Journal of Experimental Botany, 2019, 70, 5115-5130.	2.4	30
17	Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5 $\hat{l}\pm$ on glycogen structure, accumulation, and bacterial viability. BMC Microbiology, 2015, 15, 96.	1.3	26
18	Long glucan chains reduce in vitro starch digestibility of freshly cooked and retrograded milled rice. Journal of Cereal Science, 2019, 86, 108-116.	1.8	22

#	Article	IF	CITATIONS
19	Harnessing particle disintegration of cooked rice grains for predicting glycaemic index. Carbohydrate Polymers, 2020, 248, 116789.	5.1	19
20	A High-Throughput In Vitro Assay for Screening Rice Starch Digestibility. Foods, 2019, 8, 601.	1.9	13
21	Improving Head Rice Yield and Milling Quality: State-of-the-Art and Future Prospects. Methods in Molecular Biology, 2019, 1892, 1-18.	0.4	13
22	Paralytic shellfish toxin concentration and cell density changes in Pyrodinium bahamense – Noctiluca scintillans feeding experiments. Toxicon, 2010, 55, 1017-1023.	0.8	9
23	Functional Genomic Validation of the Roles of Soluble Starch Synthase IIa in Japonica Rice Endosperm. Frontiers in Genetics, 2020, 11, 289.	1.1	7
24	Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform. Methods in Molecular Biology, 2019, 1892, 277-300.	0.4	4
25	Quantifying Grain Digestibility of Starch Fractions in Milled Rice. Methods in Molecular Biology, 2019, 1892, 241-252.	0.4	3
26	The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. Theoretical and Applied Genetics, 2020, 133, 2961-2974.	1.8	1
27	Obtaining High-Quality Transcriptome Data from Cereal Seeds by a Modified Method for Gene Expression Profiling. Journal of Visualized Experiments, 2020, , .	0.2	O