Hossein Esmaeili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8817038/publications.pdf

Version: 2024-02-01

136940 206102 2,876 88 32 48 h-index citations g-index papers 92 92 92 1593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Decoration of carbon nanotubes with MgO and CuFe ₂ O ₄ as a nanorod composite for the removal of Pb (II) ion from aqueous media. Journal of Dispersion Science and Technology, 2023, 44, 1305-1316.	2.4	1
2	Elimination of methyl violet 2B dye from water using <i>Citrus limetta</i> leaves-activated carbon modified by copper-ferrite nanoparticles. Separation Science and Technology, 2022, 57, 509-522.	2.5	3
3	Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of <scp><i>Mespilus germanica</i></scp> triglyceride for biodiesel production. Environmental Progress and Sustainable Energy, 2022, 41, e13738.	2.3	6
4	Date seed activated carbon decorated with CaO and Fe3O4 nanoparticles as a reusable sorbent for removal of formaldehyde. Korean Journal of Chemical Engineering, 2022, 39, 146-160.	2.7	11
5	A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy, 2022, 158, 106356.	5.7	80
6	Advantages of nanoadsorbents, biosorbents, and nanobiosorbents for contaminant removal. , 2022, , 105-133.		3
7	Synthesis of Zeolite Clay/Fe-Al Hydrotalcite Composite as a Reusable Adsorbent for Adsorption/Desorption of Cationic Dyes. Arabian Journal for Science and Engineering, 2022, 47, 6651-6665.	3.0	9
8	Ultrasonic-assisted synthesis of zeolite/activated carbon@MnO2 composite as a novel adsorbent for treatment of wastewater containing methylene blue and brilliant blue. Environmental Monitoring and Assessment, 2022, 194, 279.	2.7	10
9	Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater. Materials Chemistry and Physics, 2022, 284, 126088.	4.0	77
10	MgO@CNT@K2CO3 as a superior catalyst for biodiesel production from waste edible oil using two-step transesterification process. Chemical Engineering Research and Design, 2022, 161, 136-146.	5.6	25
11	A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts. Fuel Processing Technology, 2022, 230, 107224.	7.2	65
12	Ultrasound-assisted biodiesel generation from waste edible oil using CoFe2O4@GO as a superior and reclaimable nanocatalyst: Optimization of two-step transesterification by RSM. Fuel, 2022, 327, 125170.	6.4	23
13	Activated carbon@MgO@Fe3O4 as an efficient adsorbent for As (III) removal. Carbon Letters, 2021, 31, 851-862.	5.9	19
14	Biodiesel production from goat fat using calcium oxide nanocatalyst and its combination with diesel fuel to improve fuel properties. International Journal of Sustainable Engineering, 2021, 14, 1122-1131.	3.5	11
15	Calcined lotus leaf as a low-cost and highly efficient biosorbent for removal of methyl violet dye from aqueous media. International Journal of Environmental Analytical Chemistry, 2021, 101, 2761-2784.	3.3	27
16	Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). Separation Science and Technology, 2021, 56, 1328-1341.	2.5	24
17	Enhancement of the chromium removal behavior of Moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydrate Polymers, 2021, 251, 117085.	10.2	72
18	Activated carbon/bentonite/Fe ₃ O ₄ nanocomposite for treatment of wastewater containing Reactive Red 198. Separation Science and Technology, 2021, 56, 2693-2707.	2.5	14

#	Article	IF	Citations
19	Enhancement of Biodiesel Production from Chicken Fat Using MgO and MgO@Na ₂ ONANOCATALLY Nanocatalysts. Chemical Engineering and Technology, 2021, 44, 77-84.	1.5	16
20	Highly efficient removal of toxic ions by the activated carbon derived from Citrus limonÂtree leaves. Carbon Letters, 2021, 31, 509-521.	5.9	19
21	Application of nanotechnology for biofuel production. , 2021, , 149-172.		4
22	Application of biosurfactants in the removal of oil from emulsion. , 2021, , 107-127.		8
23	Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study. Chemical Engineering Research and Design, 2021, 148, 775-795.	5.6	49
24	Synthesis of wheat bran sawdust/Fe3O4 composite for the removal of methylene blue and methyl violet. Environmental Monitoring and Assessment, 2021, 193, 276.	2.7	35
25	Application of nanomaterials for demulsification of oily wastewater: A review study. Environmental Technology and Innovation, 2021, 22, 101498.	6.1	39
26	Nanomaterials for subsurface application: study of particles retention in porous media. Applied Nanoscience (Switzerland), 2021, 11, 1847-1856.	3.1	6
27	Methylene Blue Dye Removal from Aqueous Media Using Activated Carbon Prepared by Lotus Leaves: Kinetic, Equilibrium and Thermodynamic Study. Acta Chimica Slovenica, 2021, 68, 363-373.	0.6	6
28	Synthesis of MnFe2O4@graphene oxide catalyst for biodiesel production from waste edible oil. Renewable Energy, 2021, 170, 426-437.	8.9	49
29	Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: A review study. Journal of Cleaner Production, 2021, 305, 127200.	9.3	35
30	Activated Carbon/Bentonite/Fe ₃ O ₄ as Novel Nanobiocomposite for High Removal of Cr(VI) lons. Chemical Engineering and Technology, 2021, 44, 1908-1918.	1.5	5
31	A review study on new aspects of biodemulsifiers: Production, features and their application in wastewater treatment. Chemosphere, 2021, 284, 131364.	8.2	17
32	Removal of gas condensate from industrial wastewater using lowâ€cost adsorbents: Optimization by Box–Behnken design method. Environmental Progress and Sustainable Energy, 2021, 40, e13589.	2.3	2
33	Selective Removal of Sodium Ions from Aqueous Media Using Effective Adsorbents: Optimization by RSM and Genetic Algorithm. Acta Chimica Slovenica, 2021, 68, 791-803.	0.6	1
34	Magnetically modified MgO nanoparticles as an efficient adsorbent for phosphate ions removal from wastewater. Separation Science and Technology, 2020, 55, 1910-1921.	2.5	18
35	AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renewable Energy, 2020, 147, 25-34.	8.9	84
36	Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in Brief, 2020, 28, 104929.	1.0	39

#	Article	IF	CITATIONS
37	Clay/starch/Fe3O4 nanocomposite as an efficient adsorbent for the removal of methyl violet dye from aqueous media. International Journal of Environmental Analytical Chemistry, 2020, , 1-22.	3.3	17
38	Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Advanced Powder Technology, 2020, 31, 3236-3245.	4.1	72
39	Clay/MgFe ₂ O ₄ as a Novel Composite for Removal of Cr (VI) From Aqueous Media. ChemistrySelect, 2020, 5, 9377-9387.	1.5	5
40	Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Letters, 2020, 30, 683-698.	5.9	45
41	Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ferric molybdate nanocomposite. Korean Journal of Chemical Engineering, 2020, 37, 804-814.	2.7	28
42	Ultrasonic-assisted synthesis of natural clay/Fe3O4/graphene oxide for enhance removal of Cr (VI) from aqueous media. Environmental Science and Pollution Research, 2020, 27, 31652-31664.	5. 3	45
43	Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. Journal of Environmental Chemical Engineering, 2020, 8, 103869.	6.7	50
44	The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environmental Science and Pollution Research, 2020, 27, 14044-14057.	5. 3	85
45	Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management, 2020, 105, 373-383.	7.4	113
46	Turbulent combined forced and natural convection of nanofluid in a 3D rectangular channel using two-phase model approach. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3247-3257.	3.6	9
47	Optimization of biodiesel production from Moringa oleifera seeds oil in the presence of nano-MgO using Taguchi method. International Nano Letters, 2019, 9, 257-263.	5.0	46
48	Eggshell nano-particle potential for methyl violet and mercury ion removal: Surface study and field application. Advanced Powder Technology, 2019, 30, 2188-2199.	4.1	74
49	Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 2019, 6, 102004.	1.6	78
50	Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterification process. 3 Biotech, 2019, 9, 429.	2.2	48
51	Chemically Modified CaO/Fe ₃ O ₄ Nanocomposite by Sodium Dodecyl Sulfate for Cr(III) Removal from Water. Chemical Engineering and Technology, 2019, 42, 607-616.	1.5	61
52	Dataset of the aqueous solution and petrochemical wastewater treatment containing ammonia using low cost and efficient bio-adsorbents. Data in Brief, 2019, 26, 104308.	1.0	15
53	Calcined Umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co (II). 3 Biotech, 2019, 9, 78.	2.2	40
54	Adsorption of Lead and Arsenic Ions from Aqueous Solution by Activated Carbon Prepared from Tamarix Leaves. ChemistrySelect, 2019, 4, 12356-12367.	1.5	32

#	Article	IF	CITATIONS
55	Green synthesis of supermagnetic Fe3O4–MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance. Journal of Drug Delivery Science and Technology, 2019, 54, 101352.	3.0	31
56	Enhancement removal of Cr (VI) ion using magnetically modified MgO nanoparticles. Materials Research Express, 2019, 6, 125513.	1.6	31
57	Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel, 2019, 235, 1238-1244.	6.4	151
58	Cr(VI) removal from aqueous solution using activated carbon prepared from <i>Ziziphus spina–christi</i> leaf. Materials Research Express, 2019, 6, 045607.	1.6	40
59	Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 6336-6347.	5. 3	82
60	Adsorptive Behavior of Methylene Blue onto Sawdust of Sour Lemon, Date Palm, and Eucalyptus as Agricultural Wastes. Journal of Dispersion Science and Technology, 2019, 40, 990-999.	2.4	61
61	Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method. Tenside, Surfactants, Detergents, 2019, 56, 119-125.	1.2	4
62	Adsorption of methyl violet from aqueous solution using brown algae <i>Padina sanctae-crucis</i> Turkish Journal of Biochemistry, 2018, 43, 623-631.	0.5	37
63	Optimization of fermentation conditions for efficient ethanol production by Mucor hiemalis. Turkish Journal of Biochemistry, 2018, 43, 587-594.	0.5	6
64	MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Heat and Mass Transfer, 2018, 54, 1791-1801.	2.1	34
65	Adsorptive performance of calcined Cardita bicolor for attenuating Hg(II) and As(III) from synthetic and real wastewaters. Korean Journal of Chemical Engineering, 2018, 35, 479-488.	2.7	46
66	Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environmental Technology (United Kingdom), 2018, 39, 2792-2800.	2.2	77
67	Synthesis of Fe3O4 Nanoparticles Modified by Oak Shell for Treatment of Wastewater Containing Ni(II). Acta Chimica Slovenica, 2018, 65, 750-756.	0.6	28
68	Erythrosine Adsorption from Aqueous Solution via Decorated Graphene Oxide with Magnetic Iron Oxide Nano Particles: Kinetic and Equilibrium Studies. Acta Chimica Slovenica, 2018, 65, 882-894.	0.6	46
69	Cadmium(II) Removal from Aqueous Solution Using Microporous Eggshell: Kinetic and Equilibrium Studies. Indonesian Journal of Chemistry, 2018, 18, 265.	0.8	8
70	Toward artificial intelligence-based modeling of vapor liquid equilibria of carbon dioxide and refrigerant binary systems. Journal of the Serbian Chemical Society, 2018, 83, 199-211.	0.8	9
71	Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater. Journal of the Serbian Chemical Society, 2018, 83, 237-249.	0.8	24
72	Optimization of Biodiesel Production from Goat Tallow Using Alkaline Catalysts and Combining them with Diesel. Chemistry and Chemical Technology, 2018, 12, 120-126.	1.1	20

#	Article	IF	CITATIONS
73	Destabilization and Separation of Gas Condensate from Wastewater using Different Surfactant Demulsifiers. Tenside, Surfactants, Detergents, 2018, 55, 153-161.	1.2	9
74	Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: A dataset. Data in Brief, 2017, 12, 485-492.	1.0	46
75	Modification of Sargassum angustifolium by molybdate during a facile cultivation for high-rate phosphate removal from wastewater: structural characterization and adsorptive behavior. 3 Biotech, 2016, 6, 251.	2.2	30
76	Effect of supply/regeneration section area ratio on the performance of desiccant wheels in hot and humid climates: an experimental investigation. Heat and Mass Transfer, 2016, 52, 1175-1181.	2.1	21
77	Effect of Surfactant on Stability and Size Distribution of Gas Condensate Droplets in Water. Journal of Chemical & Drop	1.9	26
78	Comparison between the artificial neural network, SAFT and PRSV approach in obtaining the solubility of solid aromatic compounds in supercritical carbon dioxide. Journal of Supercritical Fluids, 2013, 77, 44-51.	3.2	73
79	Modeling of Colloid Adsorption in Colloidal Suspension by Using of Adsorbent Particles. Journal of Dispersion Science and Technology, 2012, 33, 1552-1559.	2.4	0
80	Adsorption of Cr (III) and Cd (II) lons using Mesoporous Cobalt-Ferrite Nanocomposite from Synthetic Wastewater. Acta Chimica Slovenica, 0, , 208-216.	0.6	9
81	Separation of Ni (II) from Industrial Wastewater by Kombucha Scoby as a Colony Consisted from Bacteria and Yeast: Kinetic and Equilibrium Studies. Acta Chimica Slovenica, 0, , 865-873.	0.6	11
82	Sulfate Ion Removal From Water Using Activated Carbon Powder Prepared by Ziziphus Spina-Christi Lotus Leaf. Acta Chimica Slovenica, 0, , 888-898.	0.6	10
83	Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater., 0, 110, 154-167.		39
84	Adsorptive removal of Pb(II), Ni(II), and Cd(II) from aqueous media and leather wastewater using Padinasanctae-crucis biomass., 0, 135, 236-246.		18
85	Preparation of activated carbon from worn tires for removal of Cu(II), Ni(II) and Co(II) ions from synthetic wastewater., 0, 141, 269-278.		26
86	Removal of $Cu(II)$, $Co(II)$ and $Pb(II)$ from synthetic and real wastewater using calcified Solamen Vaillanti snail shell., 0, 174, 324-335.		23
87	Magnetically modified activated carbon prepared from pine cones for treatment of wastewater containing heavy metals., 0, 208, 216-226.		2
88	Ziziphus spina-christi leaves biochar decorated with Fe3O4 and SDS for sorption of chromium (III) from aqueous solution. Biomass Conversion and Biorefinery, 0, , .	4.6	6