Rainer Kokozinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8816310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artefact-Suppressing Analog Spike Detection Circuit for Firing-Rate Measurements in Closed-Loop Retinal Neurostimulators. IEEE Sensors Journal, 2022, 22, 11328-11335.	4.7	1
2	Feature extraction and neural network-based multi-peak analysis on time-correlated LiDAR histograms. Journal of Optics (United Kingdom), 2022, 24, 034008.	2.2	3
3	A High Temperature SOI-CMOS Chipset Focusing Sensor Electronics for Operating Temperatures up to 300A°C. Journal of Microelectronics and Electronic Packaging, 2022, 19, 1-7.	0.7	1
4	Data Processing Approaches on SPAD-Based d-TOF LiDAR Systems: A Review. IEEE Sensors Journal, 2021, 21, 5656-5667.	4.7	29
5	Feature Extraction and Neural Network-based Analysis on Time-correlated LiDAR Histograms. , 2021, , .		1
6	New epiretinal implant with integrated sensor chips for optical capturing shows a good biocompatibility profile in vitro and in vivo. BioMedical Engineering OnLine, 2021, 20, 102.	2.7	6
7	Implementation and Evaluation of a Neural Network-Based LiDAR Histogram Processing Method on FPGA. , 2021, , .		Ο
8	A 47 F2/bit Charge-Sharing based Sequence-dependent PUF with a Permutative Challenge. , 2020, , .		0
9	Artefact-Suppressing Analog Spike Detection Circuit for Firing-Rate Measurements in Closed-Loop Retinal Neurostimulators. , 2020, , .		Ο
10	A 13.56 MHz RF Frontend with Current-Mode Demodulator for Wide Input-Power Dynamic-Range. , 2019, , .		0
11	A New Configurable Wireless Sensor System for Biomedical Applications with ISO 18000-3 Interface in 0.35 Âμm CMOS. Sensors, 2019, 19, 4110.	3.8	6
12	Fully Integrated Sensor Electronics for Inductive Proximity Switches Operating up to 250 °C. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2019, 2019, 000112-000116.	0.2	1
13	Expected Value and Variance of the Indirect Time-of-Flight Measurement With Dead Time Afflicted Single-Photon Avalanche Diodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 970-981.	5.4	3
14	2×192 Pixel CMOS SPAD-Based Flash LiDAR Sensor with Adjustable Background Rejection. , 2018, , .		2
15	Capacitive Multi-Channel Security Sensor IC for Tamper-Resistant Enclosures. , 2018, , .		3
16	A low-power wireless nano-potentiostat for biomedical applications with ISO 18000-3 interface in 0.35 μm CMOS. , 2018, , .		0
17	Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection. Sensors, 2018, 18, 4338.	3.8	54
18	SPAD-Based LiDAR Sensor in 0.35 µm Automotive CMOS with Variable Background Light Rejection. Proceedings (mdpi), 2018, 2, .	0.2	3

RAINER KOKOZINSKI

#	Article	IF	CITATIONS
19	A High-Precision and High-Bandwidth MEMS-Based Capacitive Accelerometer. IEEE Sensors Journal, 2018, 18, 6533-6539.	4.7	38
20	Current Controlled CMOS Stimulator with Programmable Pulse Pattern for a Retina Implant. , 2018, , .		1
21	Enabling Secure Boot Functionality by Using Physical Unclonable Functions. , 2018, , .		4
22	SPAD-based flash LiDAR sensor with high ambient light rejection for automotive applications. , 2018, , .		3
23	Dead time effects in the indirect time-of-flight measurement with SPADs. , 2017, , .		4
24	Coincidence in SPAD-based time-of-flight sensors. , 2017, , .		6
25	Modelling of SPAD-based time-of-flight measurement techniques. , 2017, , .		4
26	Design of a CMOS image sensor and stimulation IC for a wide-angle retina implant. , 2017, , .		1
27	1×80 pixel SPAD-based flash LIDAR sensor with background rejection based on photon coincidence. , 2017, , .		4
28	Range accuracy of SPAD-based time-of-flight sensors. , 2017, , .		5
29	Implementation of a Charge-Controlled Stimulation Method in a Monolithic Integrated CMOS-Chip for Excitation of Retinal Neuron Cells. , 2017, , .		3
30	Implementation of an Integrated Differential Readout Circuit for Transistor-Based Physically Unclonable Functions. , 2017, , .		1
31	A high precision MEMS based capacitive accelerometer for seismic measurements. , 2017, , .		5
32	An ultra-low noise capacitance to voltage converter for sensor applications in 0.35â€ [–] µm CMOS. Journal of Sensors and Sensor Systems, 2017, 6, 285-301.	0.9	14
33	High Temperature EEPROM Using a Differential Approach for High Reliability. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2017, 2017, 000042-0000045.	0.2	0
34	SPAD-based 3D sensors for high ambient illumination. , 2016, , .		6
35	Using lon/loff to predict switch-based circuit accuracy in an extended temperature range up to 300°C. , 2016, , .		0

36 High Temperature GaN Gate Driver in SOI CMOS Technology. Additional Conferences (Device Packaging) Tj ETQq0 8.2 rgBT / 8 verlock 10

#	Article	IF	CITATIONS
37	HOT-300 – A Multidisciplinary Technology Approach Targeting Microelectronic Systems at 300 °C Operating Temperature. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2016, 2016, 000001-000010.	0.2	1
38	Application-specific optimization of optical sensors based on single-photon avalanche diodes. , 2015, , .		0
39	Simulative Analysis Methods Deployed to Optimize Automotive Battery Management. , 2015, , .		1
40	High temperature SOI CMOS technology and circuit realization for applications up to 300 ${ m \AA^oC.}$, 2015, , .		22
41	High Temperature 0.35 Micron Silicon-on-Insulator CMOS Technology. Additional Conferences (Device) Tj ETQq1	1 0,78431 0.2	4.rgBT /Ov
42	High temperature analog circuit design in PD-SOI CMOS technology using reverse body biasing. , 2013, ,		3
43	Enhanced High Temperature Performance of PD-SOI MOSFETs in Analog Circuits Using Reverse Body Biasing. Journal of Microelectronics and Electronic Packaging, 2013, 10, 171-182.	0.7	4
44	Analog performance of PD-SOI MOSFETs at high temperatures using reverse body bias. , 2013, , .		0
45	Delay element concept for Continuous Time Digital Signal Processing. , 2013, , .		3
46	Transmission Line Model for Pulse Wave Analysis Accompanied on Experimental Measurements at a Human Model. Biomedizinische Technik, 2012, 57, .	0.8	0
47	Low-power area-efficient delay element with a wide delay range. , 2012, , .		2
48	Flow Sensor for the Velocity Measurement at a Pulsed Volume Flow. Biomedizinische Technik, 2012, 57,	0.8	0
49	A Cyclic RSD Analog-Digital-Converter for Application Specific High Temperature Integrated Circuits up to 250°C. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000214-000219.	0.2	2
50	Optimization and implementation of continuous time DSP-systems by using granularity reduction. , 2011, , .		4
51	Posterausstellung P21-P40. Biomedizinische Technik, 2011, 56, 1-29.	0.8	Ο
52	A Robust SOI Gain-Boosted Operational Amplifier Targeting High Temperature Precision Applications up to 300°C. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2011, 2011, 000238-000242.	0.2	0
53	Sensorik und Monitoring. Biomedizinische Technik, 2010, 55, 1-249.	0.8	0
54	High Resolution Delay Locked Loop for time synchronization with multi path mitigation. , 2009, , .		0

RAINER KOKOZINSKI

#	Article	IF	CITATIONS
55	A UHF voltage multiplier circuit using a threshold-voltage cancellation technique. , 2009, , .		17
56	Time synchronization for Real Time Localization Systems with multi path mitigation. , 2009, , .		6
57	An Analog Front End for a Passive UHF Transponder with Temperature Sensor. , 2008, , .		3
58	Technology-caused performance limitation of the common-gate LNA. , 2007, , .		1
59	The evolution of hardware platforms for mobile 'software defined radio' terminals. , 2002, , .		11
60	Microwave wideband amplifiers in bulk-CMOS and CMOS/SIMOX technologies. , 1995, , .		11
61	Low-voltage CMOS analog circuits. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1995, 42, 864-872.	0.1	21
62	Rule-based adaptive configuration selection for analog design systems. Analog Integrated Circuits and Signal Processing, 1994, 5, 111-119.	1.4	0
63	Design methodology for analog monolithic circuits. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1994, 41, 387-394.	0.1	9
64	A new detector architecture for optical pickup units in DVD systems. , 0, , .		3
65	Employing beam-forming for estimating the direction of arrival in a multi-path propagation environment. Advances in Radio Science, 0, 3, 151-155.	0.7	1
66	LNA for Low-Power, Low Data Rate PAN Applications. Advances in Radio Science, 0, 4, 219-224.	0.7	3
67	Ultra Low Power Bandgap Strom- und Spannungsquellen in CMOS-Technologie für integrierte drahtlose Systeme. Advances in Radio Science, 0, 4, 213-217.	0.7	0