Yaser Acikbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8816221/publications.pdf

Version: 2024-02-01

567144 677027 49 615 15 22 citations h-index g-index papers 52 52 52 502 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Stability evaluation of environmentally volatile pollutants sensing devices by developing theoretical calculation and mathematical modeling. Sensors and Actuators A: Physical, 2022, 333, 113216.	2.0	0
2	Anisotropic Etching of CVD Grown Graphene for Ammonia Sensing. IEEE Sensors Journal, 2022, 22, 3888-3895.	2.4	4
3	Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	6
4	The pillar[5]arene-based spun thin films: preparation, characterization, development of optical and mass sensitive sensors for swelling dynamics and gas sensing abilities. Research on Chemical Intermediates, 2022, 48, 1863-1875.	1.3	1
5	Synthesis and characterization of singleâ€walled carbon nanotube: Cytoâ€genotoxicity in <i>Allium cepa</i> root tips and molecular docking studies. Microscopy Research and Technique, 2022, 85, 3193-3206.	1.2	7
6	Sensor application of pyridine modified calix[4]arene Langmuir-Blodgett thin film. Optik, 2022, 265, 169492.	1.4	1
7	Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. Journal of Molecular Structure, 2022, 1265, 133482.	1.8	7
8	Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays. Journal of Applied Genetics, 2021, 62, 85-92.	1.0	18
9	Recent progress in pillar[n]arene-based thin films on chemical sensor applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 39-54.	0.9	9
10	Cyto–genotoxicity, antibacterial, and antibiofilm properties of green synthesized silver nanoparticles using <i>Penicillium toxicarium</i> . Microscopy Research and Technique, 2021, 84, 2530-2543.	1.2	4
11	A Novel Calix[4]arene Thiourea Decorated with 2â€(2â€Aminophenyl)benzothiazole Moiety as Highly Selective Chemical Gas Sensor for Dichloromethane Vapor. ChemistrySelect, 2021, 6, 4670-4676.	0.7	10
12	Investigation of thermophysical properties of natural zeolite plates enhanced with graphite powder for thermal management of PV thermal systems. Journal of Cleaner Production, 2021, 318, 128558.	4.6	5
13	Synthesis, characterization and chemical sensor properties of a novel Zn(II) phthalocyanine containing 15-membered dioxa-dithia macrocycle moiety. Synthetic Metals, 2021, 280, 116870.	2.1	11
14	Preparation of Zinc (II) phthalocyanine-based LB thin film: Experimental characterization, the determination of some optical properties and the investigation of the optical sensing ability. Optik, 2021, 245, 167661.	1.4	9
15	Cytotoxic and Genotoxic Assessment of Silicon Dioxide Nanoparticles by Allium and Comet Tests. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 215-221.	1.3	25
16	Calix[4]arene-triazine conjugate intermediate: optical properties and gas sensing responses against aromatic hydrocarbons in Langmuir–Blodgett films. Research on Chemical Intermediates, 2020, 46, 4433-4445.	1.3	9
17	An Aminopyridine Bearing Pillar[5]arene-Based QCM Sensor for Chemical Sensing Applications: Design, Experimental Characterization, Data Modeling, and Prediction. IEEE Sensors Journal, 2020, 20, 14732-14739.	2.4	6
18	Developing of <i>N</i> â€(4â€methylpyrimidineâ€2â€yl)methacrylamide <scp>Langmuir–Blodgett</scp> thin f chemical sensor via quartz crystal microbalance technique. Microscopy Research and Technique, 2020, 83, 1198-1207.	ilm 1.2	4

#	Article	IF	Citations
19	Fabrication of LB thin film of pillar[5]arene-2-amino-3-hydroxypyridine for the sensing of vapors. Materials Letters, 2020, 267, 127538.	1.3	31
20	Assessment of the cytotoxic and genotoxic potential of pillar[5] arene derivatives by Allium cepa roots and Drosophila melanogaster haemocytes. Ecotoxicology and Environmental Safety, 2020, 192, 110328.	2.9	17
21	Investigation of environmentally volatile pollutants sensing using pillar[5]arene-based macrocycle Langmuir–Blodgett film. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
22	Improvement of sensing properties for polymer based gas sensors via host–guest principles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 315-323.	0.9	2
23	Fabrication of picoline amide-based calix[4]arene Langmuir-Blodgett thin film for volatile organic vapor sensing application. Molecular Crystals and Liquid Crystals, 2020, 710, 49-65.	0.4	5
24	Chemical Sensor Properties and Mathematical Modeling of Graphene Oxide Langmuir-Blodgett Thin Films. IEEE Sensors Journal, 2019, 19, 9097-9104.	2.4	10
25	Organic vapor sensing properties and characterization of $\hat{l}\pm$ -naphthylmethacrylate LB thin films. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 845-853.	1.2	3
26	A novel triazineâ€'bearing calix[4]arene: Design, synthesis and gas sensing affinity for volatile organic compounds. Tetrahedron, 2019, 75, 2521-2528.	1.0	23
27	Haloalkanes and aromatic hydrocarbons sensing using Langmuir–Blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 108-117.	2.3	30
28	Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests. Ecotoxicology and Environmental Safety, 2019, 168, 408-414.	2.9	36
29	Spun films of perylene diimide derivative for the detection of organic vapors with host–guest principle. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 137-146.	0.9	4
30	An Optical Vapor Sensor Based on Amphiphilic Block Copolymer Langmuir–Blodgett Films. IEEE Sensors Journal, 2018, 18, 5313-5320.	2.4	7
31	Optical and Vapor Sensing Properties of Calix[4]arene Langmuir-Blodgett Thin Films with Host–Guest Principles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 526-532.	1.2	18
32	Optical Properties and Swelling Behavior of Fe ₃ O ₄ Functionalized Graphene Oxide Composite Thin Film. IEEE Sensors Journal, 2017, 17, 1222-1229.	2.4	8
33	Fabrication and characterization of calix[4]arene Langmuir–Blodgett thin film for gas sensing applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89, 77-84.	0.9	17
34	Preparation of pillar[5]arene-quinoline Langmuir–Blodgett thin films for detection of volatile organic compounds with host–guest principles. Analyst, The, 2017, 142, 3689-3698.	1.7	41
35	Optical characterization and swelling behaviour of Langmuir–Blodgett thin films of a novel		

3

#	Article	IF	CITATIONS
37	Characterization of PDPA- <i>b</i> -PDMA- <i>b</i> -PDPA triblock copolymer Langmuir-Blodgett films for organic vapor sensing application. Molecular Crystals and Liquid Crystals, 2016, 634, 104-117.	0.4	6
38	Characterization of N-cyclohexylmethacrylamide LB thin films for room temperature vapor sensor application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 132-139.	1.2	6
39	Optical Characterization of an <i>N,N</i> ′-Dicyclohexyl-3,4:9,10-Perylene bis(Dicarboximide) Langmuir–Blodgett Film for the Determination of Volatile Organic Compounds. Analytical Letters, 2016, 49, 2573-2586.	1.0	6
40	Swelling behavior of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapors by quartz crystal microbalance technique. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 18-25.	1.2	17
41	Characterization and Gas Sensing Properties of Langmuir-Blodgett Thin Films of Poly(ClNOEMA-co-DEAEMA). Sensor Letters, 2016, 14, 474-483.	0.4	3
42	Characterization of 1,7-dibromo-N,N′-(bicyclohexyl)-3,4:9,10-perylendiimide Langmuir–Blodgett film for organic vapor sensing application. Applied Surface Science, 2015, 350, 135-141.	3.1	17
43	Characterization and organic vapor sensing properties of Langmuir-Blodgett film using perylendiimide material. Research on Engineering Structures and Materials, 2015, 1, .	0.2	1
44	Fabrication of Langmuir–Blodgett thin film for organic vapor detection using a novel N,N′-dicyclohexyl-3,4:9,10-perylenebis (dicarboximide). Sensors and Actuators B: Chemical, 2014, 200, 61-68.	4.0	18
45	Thin film characterization and vapor sensing properties of a novel perylenediimide material. Sensors and Actuators B: Chemical, 2011, 160, 65-71.	4.0	16
46	Characterization and organic vapor sensing properties of Langmuir–Blodgett film using a new three oxygen-linked phthalocyanine incorporating lutetium. Sensors and Actuators B: Chemical, 2009, 135, 426-429.	4.0	38
47	A study of Langmuir–Blodgett thin film for organic vapor detection. Materials Letters, 2007, 61, 417-420.	1.3	12
48	Characterisation of Langmuirâ€"Blodgett films of new multinuclear copper and zinc phthalocyanines and their sensing properties to volatile organic vapours. Sensors and Actuators B: Chemical, 2007, 123, 1017-1024.	4.0	44
49	The bisbenzothiazole-p-tert-butylcalix[4]arene-thiourea Langmuir–Blodgett thin films: preparation, optical properties, swelling dynamics and gas sensing properties via host–guest principles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , 1.	0.9	0