Guido Francesco Frate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8816151/publications.pdf

Version: 2024-02-01

24 papers

629 citations

840776 11 h-index 19 g-index

24 all docs

24 docs citations

times ranked

24

394 citing authors

#	Article	IF	CITATIONS
1	Carnot battery technology: A state-of-the-art review. Journal of Energy Storage, 2020, 32, 101756.	8.1	137
2	A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 2017, 121, 1051-1058.	6.0	87
3	Energy storage for grid-scale applications: Technology review and economic feasibility analysis. Renewable Energy, 2021, 163, 1754-1772.	8.9	70
4	Multi-criteria investigation of a pumped thermal electricity storage (PTES) system with thermal integration and sensible heat storage. Energy Conversion and Management, 2020, 208, 112530.	9.2	66
5	Analysis of suitability ranges of high temperature heat pump working fluids. Applied Thermal Engineering, 2019, 150, 628-640.	6.0	64
6	Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review. Energies, 2020, 13, 4766.	3.1	47
7	Multi-Criteria Economic Analysis of a Pumped Thermal Electricity Storage (PTES) With Thermal Integration. Frontiers in Energy Research, 2020, 8, .	2.3	32
8	Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective. Energy, 2018, 159, 656-668.	8.8	28
9	Techno-economic sizing of a battery energy storage coupled to a wind farm: an Italian case study. Energy Procedia, 2018, 148, 447-454.	1.8	20
10	Ramp rate abatement for wind power plants: A techno-economic analysis. Applied Energy, 2019, 254, 113600.	10.1	19
11	Impact of wind speed distribution and management strategy on hydrogen production from wind energy. Energy, 2022, 256, 124636.	8.8	14
12	Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications. E3S Web of Conferences, 2019, 137, 01037.	0.5	11
13	Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis. Applied Energy, 2019, 238, 11-21.	10.1	11
14	Energy and economic savings through a plant supervised management in large-scale commercial activities. Applied Thermal Engineering, 2018, 141, 269-279.	6.0	8
15	ORC Optimal Design through Clusterization for Waste Heat Recovery in Anaerobic Digestion Plants. Applied Sciences (Switzerland), 2021, 11, 2762.	2.5	5
16	Impact of Forecast Uncertainty on Wind Farm Profitability. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	5
17	Ramp rate abatement for wind energy integration in microgrids. Energy Procedia, 2019, 159, 292-297.	1.8	2
18	Performance analysis of a Brayton Pumped Thermal Electricity Storage (PTES) with a liquid sensible heat storage. E3S Web of Conferences, 2021, 238, 10007.	0.5	1

#	Article	IF	CITATIONS
19	Off-Design of a Pumped Thermal Energy Storage Based on Closed Brayton Cycles. , 2021, , .		1
20	Off-Design of a Pumped Thermal Energy Storage Based On Closed Brayton Cycles. Journal of Engineering for Gas Turbines and Power, 2021, , .	1.1	1
21	A simplified model for the prediction of energy consumption in large-scale commercial activities. AIP Conference Proceedings, 2019, , .	0.4	O
22	Mini-grid hybridization and demand side management on non-interconnected small islands: the case study of Ustica, Italy. E3S Web of Conferences, 2021, 238, 02008.	0.5	0
23	Impact of Forecast Uncertainty on Wind Farm Profitability. , 2019, , .		O
24	Feasibility analysis of a hybrid auxiliary power unit for pleasure boats. E3S Web of Conferences, 2020, 197, 05005.	0.5	0