Robert Puers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815829/publications.pdf Version: 2024-02-01

POREDT DUEDS

#	Article	IF	CITATIONS
1	Monitoring Lower Back Activity in Daily Life Using Small Unintrusive Sensors and Wearable Electronics in the Context of Rheumatic and Musculoskeletal Diseases. Sensors, 2021, 21, 6362.	3.8	3
2	System for recording from multiple flexible polyimide neural probes in freely behaving animals. Journal of Neural Engineering, 2020, 17, 016046.	3.5	13
3	Magnetic Cell Centrifuge Platform Performance Study with Different Microsieve Pore Geometries. Sensors, 2020, 20, 48.	3.8	6
4	Digital Microfluidics for Single Bacteria Capture and Selective Retrieval Using Optical Tweezers. Micromachines, 2020, 11, 308.	2.9	21
5	Bendable Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays Based on Silicon-On-Insulator (SOI) Technology. Journal of Microelectromechanical Systems, 2020, 29, 378-386.	2.5	12
6	Novel implantable pressure and acceleration sensor for bladder monitoring. International Journal of Urology, 2020, 27, 543-550.	1.0	10
7	Actuators: Accomplishments, opportunities and challenges. Sensors and Actuators A: Physical, 2019, 295, 604-611.	4.1	25
8	Physiological Driver Monitoring Using Capacitively Coupled and Radar Sensors. Applied Sciences (Switzerland), 2019, 9, 3994.	2.5	21
9	Flexible Soi-Based Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays. , 2019, , .		10
10	Highly Efficient Piezoelectric Micromachined Ultrasound Transducer (PMUT) for Underwater Sensor Networks. , 2019, , .		12
11	Dextran as a Resorbable Coating Material for Flexible Neural Probes. Micromachines, 2019, 10, 61.	2.9	22
12	Resonating Shell: A Spherical-Omnidirectional Ultrasound Transducer for Underwater Sensor Networks. Sensors, 2019, 19, 757.	3.8	22
13	Coupled Piezoelectric Bulk-Micromachined Ultrasound Trasndcuer (cPB-MUT): An Ultrasound Transducer with Enhanced Pressure Response in Liquid and Dense Medium. , 2019, , .		2
14	Capacitive multi-electrode array with real-time electrode selection for unobtrusive ECG & BIOZ monitoring. , 2019, 2019, 5621-5624.		14
15	Wireless intravesical device for real-time bladder pressure measurement: Study of consecutive voiding in awake minipigs. PLoS ONE, 2019, 14, e0225821.	2.5	12
16	Chronic neural recording with probes of subcellular cross-section using 0.06 mmÂ ² dissolving microneedles as insertion device. Sensors and Actuators B: Chemical, 2019, 284, 369-376.	7.8	20
17	Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays. Journal of Micromechanics and Microengineering, 2019, 29, 027001.	2.6	5
18	Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, 2019, 55, 265-280.	2.2	56

#	Article	IF	CITATIONS
19	A Simplified Dielectric Material Characterization Algorithm for Both Liquids and Solids. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1639-1646.	2.2	6
20	Multi-layer embedded carbon fibres as highly compliant and stretchable interconnects. Flexible and Printed Electronics, 2018, 3, 015010.	2.7	1
21	A foldable electrode array for 3D recording of deep-seated abnormal brain cavities. Journal of Neural Engineering, 2018, 15, 036029.	3.5	1
22	Sensor Fusion of Capacitively Coupled ECG and Continuous-Wave Doppler Radar for Improved Unobtrusive Heart Rate Measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 316-328.	3.6	12
23	A fast and accurate Langmuir-type polymer microtensiometer. Advances in Colloid and Interface Science, 2018, 255, 26-33.	14.7	2
24	Sensor and Embedded Control System for Liquid Crystal Implantable Eye Lens. Proceedings (mdpi), 2018, 2, .	0.2	0
25	Teflon-on-Glass Molding Enables High-Throughput Fabrication of Hydrophilic-in-Hydrophobic Microwells for Bead-Based Digital Bioassays. Materials, 2018, 11, 2154.	2.9	3
26	PMUTs Array with Dynamic Directivity: A Study of its Underwater Acoustic Power Intensity. , 2018, , .		8
27	Optimization in the Design and Fabrication of a PZT Piezoelectric Micromachined Ultrasound Transducer (PMUT). Proceedings (mdpi), 2018, 2, 743.	0.2	11
28	Sub-femtomolar detection of DNA and discrimination of mutant strands using microwell-array assisted digital enzyme-linked oligonucleotide assay. Analytica Chimica Acta, 2018, 1041, 122-130.	5.4	9
29	Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. Materials, 2018, 11, 1109.	2.9	21
30	Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring. Sensors, 2018, 18, 577.	3.8	45
31	An ionic liquid based strain sensor for large displacement measurement. Biomedical Microdevices, 2017, 19, 1.	2.8	32
32	Extracellular matrix proteins as temporary coating for thin-film neural implants. Journal of Neural Engineering, 2017, 14, 014001.	3.5	8
33	Single-Step Imprinting of Femtoliter Microwell Arrays Allows Digital Bioassays with Attomolar Limit of Detection. ACS Applied Materials & amp; Interfaces, 2017, 9, 10418-10426.	8.0	48
34	Failure Mechanisms in MEMS/NEMS Devices. Springer Handbooks, 2017, , 1437-1457.	0.6	9
35	Liquid measurements at microliter volumes using 1-port coplanar interdigital capacitor. , 2017, , .		8
36	Investigation of thermal effect caused by different input power of biosensor using a novel microwave		4

and optical sensing system for biological liquids. , 2017, , .

#	Article	IF	CITATIONS
37	Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion. Biomedical Microdevices, 2017, 19, 52.	2.8	11
38	Single-Element Omnidirectional Piezoelectric Ultrasound Transducer for under Water Communication. Proceedings (mdpi), 2017, 1, .	0.2	5
39	A Piezoelectric Micromachined Ultrasound Transducers (pMUT) Array, for Wide Bandwidth Underwater Communication Applications. Proceedings (mdpi), 2017, 1, .	0.2	9
40	In-Vivo Implantable Sensor System for Measuring Bladder Wall Movements. Proceedings (mdpi), 2017, 1, 566.	0.2	3
41	Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites. Sensors, 2017, 17, 2388.	3.8	141
42	Submucosal Exploration of EMG and Physiological Parameters in the Bladder Wall. Proceedings (mdpi), 2017, 1, .	0.2	5
43	An Implantable Intravascular Pressure Sensor for a Ventricular Assist Device. Micromachines, 2016, 7, 135.	2.9	30
44	Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging. Sensors, 2016, 16, 1294.	3.8	6
45	Biocompatible Packaging of an Epicardial Accelerometer for Real-time Assessment of Cardiac Motion. Procedia Engineering, 2016, 168, 80-83.	1.2	6
46	The Bladder Pill: Developments Toward Bladder Pressure Measurement in Wake Mini-pigs. Procedia Engineering, 2016, 168, 193-196.	1.2	8
47	In-situ Growth of Platinum with Hierarchical Porosity for Low Impedance Biomedical Microelectrode Fabrication. Procedia Engineering, 2016, 168, 1122-1126.	1.2	0
48	A Foldable Neural Electrode for 3D Stimulation of Deep Brain Cavities. Procedia Engineering, 2016, 168, 137-142.	1.2	1
49	Tracking Elite Swimmers in Real Time with Wearable Low-power Wireless Sensor Networks. Procedia Engineering, 2016, 147, 627-631.	1.2	3
50	Wireless powering and communication for implants, based on a Royer oscillator with radio and near-field links. Sensors and Actuators A: Physical, 2016, 250, 273-280.	4.1	4
51	Minimization of Ionic Transport Resistance in Porous Monoliths for Application in Integrated Solar Water Splitting Devices. Journal of Physical Chemistry C, 2016, 120, 21242-21247.	3.1	11
52	An integrated multi-electrode-optrode array for in vitro optogenetics. Scientific Reports, 2016, 6, 20353.	3.3	36
53	Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip. Analytical Chemistry, 2016, 88, 8596-8603.	6.5	23

54 Time multiplexed active neural probe with 678 parallel recording sites. , 2016, , .

#	Article	IF	CITATIONS
55	Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	29
56	Quasi-3-D Finite-Element Method for Cylindrically Symmetric Models With Small Eccentricities. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	3
57	Wireless Fidelity Electromagnetic Field Exposure Monitoring With Wearable Body Sensor Networks. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 779-786.	4.0	10
58	A Monte Carlo simulator for noise analysis of avalanche photodiode pixels in low-light image sensing. Proceedings of SPIE, 2016, , .	0.8	0
59	SU-8 Photoresist. , 2016, , 3858-3873.		2
60	High-density optrode-electrode neural probe using SixNy photonics for in vivo optogenetics. , 2015, , .		15
61	Biocompatible Packaging and Testing of an Endocardial Accelerometer for Heart Wall Motion Analysis. Procedia Engineering, 2015, 120, 840-844.	1.2	7
62	Insulation lifetime improvement of polyimide thin film neural implants. Journal of Neural Engineering, 2015, 12, 054001.	3.5	34
63	Co-design of a MEMS-CMOS autonomous switched oscillator. , 2015, , .		0
64	A MEMS Resonator as a Power Receiver for Inductively Powered Implantable Sensors. Procedia Engineering, 2015, 120, 570-573.	1.2	1
65	Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells. Lab on A Chip, 2015, 15, 1852-1860.	6.0	41
66	Langmuir monolayer characterization via polymer microtensiometers. Sensors and Actuators A: Physical, 2015, 229, 110-117.	4.1	4
67	On-Body Calibration and Measurements Using a Personal, Distributed Exposimeter for Wireless Fidelity. Health Physics, 2015, 108, 407-418.	0.5	16
68	A Wireless Powering and Communication System for Implantable Devices Based on a Royer Oscillator with Radio and Near-field Communication Links. Procedia Engineering, 2015, 120, 306-309.	1.2	8
69	Fabrication of Nanostructured Platinum with Multilevel Porosity for Low Impedance Biomedical Recording and Stimulation Electrodes. Procedia Engineering, 2015, 120, 355-359.	1.2	8
70	Separation of magnetic microparticles in segmented flow using asymmetric splitting regimes. Microfluidics and Nanofluidics, 2015, 18, 91-102.	2.2	21
71	Selective DNA extraction with microparticles in segmented flow. Microfluidics and Nanofluidics, 2015, 18, 293-303.	2.2	17

#	Article	IF	CITATIONS
73	Sensor and Instrumentation for Cable Tension Quantification. Procedia Engineering, 2014, 87, 1473-1476.	1.2	2
74	An Ionic Liquid Based Strain Sensor for Large Displacements. Procedia Engineering, 2014, 87, 1123-1126.	1.2	16
75	Physiological constraints for an intraocular inductive distance sensor. , 2014, 2014, 646-9.		1
76	Digital microfluidic chip technology for water permeability measurements on single isolated plant protoplasts. Sensors and Actuators B: Chemical, 2014, 199, 479-487.	7.8	25
77	An Implantable 455-Active-Electrode 52-Channel CMOS Neural Probe. IEEE Journal of Solid-State Circuits, 2014, 49, 248-261.	5.4	208
78	Contactless energy transfer at the bedside featuring an online power optimization strategy. Sensors and Actuators A: Physical, 2014, 217, 160-167.	4.1	2
79	Wireless Communication with Miniaturized Sensor Devices in Swimming. Procedia Engineering, 2014, 72, 398-403.	1.2	11
80	A highly efficient extraction protocol for magnetic particles on a digital microfluidic chip. Sensors and Actuators B: Chemical, 2014, 196, 282-291.	7.8	32
81	A Polymer Microdevice for Tensiometry of Insoluble Components. Procedia Engineering, 2014, 87, 80-83.	1.2	3
82	Plasma Enhanced Hydrophobicity of Parylene-C Surfaces for a Blood Contacting Pressure Sensor. Procedia Engineering, 2014, 87, 336-339.	1.2	8
83	Resorbable scaffold based chronic neural electrode arrays. Biomedical Microdevices, 2013, 15, 481-493.	2.8	14
84	Design of a flow-controlled asymmetric droplet splitter using computational fluid dynamics. Microfluidics and Nanofluidics, 2013, 15, 243-252.	2.2	9
85	Personal distributed exposimeter for radio frequency exposure assessment in real environments. Bioelectromagnetics, 2013, 34, 563-567.	1.6	36
86	Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform. Journal of Micromechanics and Microengineering, 2013, 23, 075023.	2.6	16
87	Developing engineering-oriented educational workshops within a student branch. , 2013, , .		0
88	Design, fabrication and testing of wafer-level thin film vacuum packages for MEMS based on nanoporous alumina membranes. Sensors and Actuators A: Physical, 2013, 189, 218-232.	4.1	8
89	MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp. Sensors and Actuators A: Physical, 2013, 193, 95-102.	4.1	26
90	Miniaturized Layer-by-Layer Deposition of Metal–Organic Framework Coatings through Digital Microfluidics. Chemistry of Materials, 2013, 25, 1021-1023.	6.7	28

#	Article	IF	CITATIONS
91	Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab on A Chip, 2013, 13, 2047.	6.0	119
92	Permittivity-based void fraction sensing for microfluidics. Sensors and Actuators A: Physical, 2013, 195, 64-70.	4.1	14
93	Integrating optical waveguides in electrowetting-on-dielectric digital microfluidic chips. Sensors and Actuators B: Chemical, 2013, 181, 166-171.	7.8	22
94	Implantable chips and sensors: Quo vadis?. , 2013, , .		0
95	A wireless energy transfer platform, integrated at the bedside. , 2013, 2013, 1458-61.		1
96	An EpoClad/EpoCore-based platform for MOEMS fabrication. Journal of Micromechanics and Microengineering, 2013, 23, 125005.	2.6	6
97	Intraocular electro-optic lens with ciliary muscle controlled accommodation. , 2013, 2013, 3190-3.		4
98	Development of an open-source smart energy house for K-12 education. , 2013, , .		3
99	An implantable 455-active-electrode 52-channel CMOS neural probe. , 2013, , .		30
100	Characterization of the adhesion of SU-8 and Epoclad. Journal of Micromechanics and Microengineering, 2012, 22, 097002.	2.6	1
101	Fabrication and testing of a MEMS platform for characterization of stimuli-sensitive hydrogels. Journal of Micromechanics and Microengineering, 2012, 22, 087001.	2.6	4
102	Towards a noise prediction model for in vivo neural recording. , 2012, 2012, 759-62.		13
103	A Parylene temporary packaging technique for MEMS wafer handling. Sensors and Actuators A: Physical, 2012, 186, 289-297.	4.1	5
104	Miniature Absolute Optical Pressure Sensor at a Fiber Tip for High Temperature Applications. Procedia Engineering, 2012, 47, 698-701.	1.2	3
105	Surface Micromachined Polymer Capacitive Accelerometer Array Utilizing Fringe Electrical Field. Procedia Engineering, 2012, 47, 627-630.	1.2	1
106	A walk down memory lane of 25 years of Eurosensors conferences. Sensors and Actuators B: Chemical, 2012, 175, 2-8.	7.8	0
107	Integrated Void Fraction Sensors for Two-phase, Microfluidic Systems. Procedia Engineering, 2012, 47, 643-646.	1.2	1
108	Polymer MOEMS Accelerometer. Procedia Engineering, 2012, 47, 120-123.	1.2	9

#	Article	IF	CITATIONS
109	A Class-E driven inductive power delivery system covering the complete upper body. Sensors and Actuators A: Physical, 2012, 183, 132-139.	4.1	30
110	A walk down memory lane of 25 years of Eurosensors conferences. Sensors and Actuators A: Physical, 2012, 186, 2-8.	4.1	3
111	Development and fabrication of a novel photopatternable electric responsive Pluronic hydrogel for MEMS applications. Sensors and Actuators A: Physical, 2012, 186, 184-190.	4.1	19
112	SiGe MEMS at processing temperatures below 250 °C. Sensors and Actuators A: Physical, 2012, 188, 230-239.	4.1	5
113	Silicon photonic sensors incorporated in a digital microfluidic system. Analytical and Bioanalytical Chemistry, 2012, 404, 2887-2894.	3.7	26
114	A Neonatal Body Sensor Network for Long-term Vital Signs Acquisition. Procedia Engineering, 2012, 47, 981-984.	1.2	5
115	Neural Implants Containing a Resorbable Chitosan Matrix. Procedia Engineering, 2012, 47, 688-689.	1.2	5
116	Poly-SiGe-Based MEMS Thin-Film Encapsulation. Journal of Microelectromechanical Systems, 2012, 21, 110-120.	2.5	16
117	A Multichannel Integrated Circuit for Electrical Recording of Neural Activity, With Independent Channel Programmability. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 101-110.	4.0	66
118	Digital Microfluidic Highâ€Throughput Printing of Single Metalâ€Organic Framework Crystals. Advanced Materials, 2012, 24, 1316-1320.	21.0	88
119	Wireless power and data transmission for robotic capsule endoscopes. , 2011, , .		25
120	A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. Journal of Micromechanics and Microengineering, 2011, 21, 054026.	2.6	110
121	Controlled stress-induced shaping of molybdenum microstructures. Procedia Engineering, 2011, 25, 309-312.	1.2	2
122	Micropatterning and dynamic swelling of photo-crosslinkable electroactive Pluronic hydrogel. Procedia Engineering, 2011, 25, 856-859.	1.2	0
123	Dedicated Class-E Driver for Large Area Wireless Medical Inspection Capsules. Procedia Engineering, 2011, 25, 1004-1007.	1.2	4
124	High Strength, Polymer Microneedles For Transdermal Drug Delivery. Procedia Engineering, 2011, 25, 1377-1380.	1.2	7
125	A Parylene Temporary Packaging Technique for MEMS Wafer Handling. Procedia Engineering, 2011, 25, 1501-1504.	1.2	1
126	A Self-Tuning Inductive Powering System for Biomedical Implants. Procedia Engineering, 2011, 25, 1585-1588.	1.2	18

#	Article	IF	CITATIONS
127	Built-in Self-Limitation of Masked Aluminum Anodization using Photoresist. Procedia Engineering, 2011, 25, 1633-1636.	1.2	1
128	Comparison of methods for the mechanical characterization of polymers for MEMS applications. Journal of Micromechanics and Microengineering, 2011, 21, 115027.	2.6	17
129	Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. Lab on A Chip, 2011, 11, 2790.	6.0	73
130	A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation. Sensors and Actuators A: Physical, 2011, 172, 253-258.	4.1	87
131	Two-Dimensional Multi-Channel Neural Probes With Electronic Depth Control. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5, 403-412.	4.0	51
132	Controlling droplet size variability of a digital lab-on-a-chip for improved bio-assay performance. Microfluidics and Nanofluidics, 2011, 11, 25-34.	2.2	20
133	Air gap-based MEMS switch technology using nickel surface micromachining. Sensors and Actuators A: Physical, 2011, 166, 256-263.	4.1	6
134	Systematic design of a programmable low-noise CMOS neural interface for cell activity recording. , 2011, , .		2
135	A 16-channel low-noise programmable system for the recording of neural signals. , 2011, , .		2
136	Contact Resistivity of Laser Annealed SiGe for MEMS Structural Layers Deposited at 210°C. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	1
137	An in-plane SiGe differential capacitive accelerometer for above-IC integration. Journal of Micromechanics and Microengineering, 2011, 21, 074011.	2.6	8
138	A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording. Journal of Micromechanics and Microengineering, 2011, 21, 125001.	2.6	37
139	Determining the physical properties of EpoClad negative photoresist for use in MEMS applications. Journal of Micromechanics and Microengineering, 2011, 21, 074001.	2.6	12
140	Activity based neural front-end recording system. Electronics Letters, 2011, 47, 1170.	1.0	0
141	Short Distance Wireless Communications. Integrated Circuits and Systems, 2011, , 219-277.	0.2	6
142	An optical absolute pressure sensor for high-temperature applications, fabricated directly on a fiber. Journal of Micromechanics and Microengineering, 2010, 20, 029801-029801.	2.6	0
143	A wireless power supply system for robotic capsular endoscopes. Sensors and Actuators A: Physical, 2010, 162, 177-183.	4.1	78
144	The BladderPill: An in-body system logging bladder pressure. Sensors and Actuators A: Physical, 2010, 162, 160-166.	4.1	20

#	Article	IF	CITATIONS
145	Robust monitoring of vital signs integrated in textile. Sensors and Actuators A: Physical, 2010, 161, 288-296.	4.1	27
146	A water-tight packaging of MEMS electrostatic actuators for biomedical applications. Microsystem Technologies, 2010, 16, 2109-2113.	2.0	18
147	Scaling the Suspended-Gate FET: Impact of Dielectric Charging and Roughness. IEEE Transactions on Electron Devices, 2010, 57, 804-813.	3.0	12
148	Pseudo-Two-Dimensional Model for Double-Gate Tunnel FETs Considering the Junctions Depletion Regions. IEEE Transactions on Electron Devices, 2010, 57, 827-834.	3.0	223
149	An efficient hardware-optimized compression algorithm for wireless capsule endoscopy image transmission. Procedia Engineering, 2010, 5, 208-211.	1.2	12
150	A wireless powering system for a vibratory-actuated endoscopic capsule. Procedia Engineering, 2010, 5, 572-575.	1.2	8
151	Design and characterization of a CMOS compatible poly-SiGe lowg capacitive accelerometer. Procedia Engineering, 2010, 5, 742-745.	1.2	6
152	Thermal analysis of a Ag/Ti based microheater. Procedia Engineering, 2010, 5, 1356-1359.	1.2	8
153	Nickel-plated thermal switch with electrostatic latch. Sensors and Actuators A: Physical, 2010, 164, 148-153.	4.1	6
154	Dynamic thermal mechanical characterization of Epoclad negative photoresist for micro mechanical structures. Microelectronic Engineering, 2010, 87, 1278-1280.	2.4	2
155	Physical loss mechanisms for resonant acoustical waves in boron doped poly-SiGe deposited with hydrogen dilution. Journal of Applied Physics, 2010, 108, .	2.5	6
156	(Invited) SiGe MEMS Technology: A Platform Technology Enabling Different Demonstrators. ECS Transactions, 2010, 33, 799-812.	0.5	11
157	Mechanical characterization of poly-SiGe layers for CMOS–MEMS integrated application. Journal of Micromechanics and Microengineering, 2010, 20, 015014.	2.6	16
158	A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. Journal of Micromechanics and Microengineering, 2010, 20, 064006.	2.6	70
159	Diffusing and swelling in SU-8: insight in material properties and processing. Journal of Micromechanics and Microengineering, 2010, 20, 095013.	2.6	52
160	Power Processing Circuits for Piezoelectric Vibration-Based Energy Harvesters. IEEE Transactions on Industrial Electronics, 2010, 57, 4170-4177.	7.9	68
161	Selective laser annealing for improved SiGe MEMS structural layers at 210°C. , 2010, , .		2
162	Thermomechanical design and modeling of porous alumina-based thin film packages for MEMS. , 2010, ,		4

#	Article	IF	CITATIONS
163	Two-dimensional multi-channel neural probes with electronic depth control. , 2010, , .		6
164	Failure Mechanisms in MEMS/NEMS Devices. , 2010, , 1761-1782.		4
165	In vitro cytotoxicity testing and the application of elastic interconnection technology for short-term implantable electronics. , 2009, 2009, 4880-3.		2
166	Design and measurement of stress indicator structures for the characterization of Epoclad negative photoresist. Journal of Micromechanics and Microengineering, 2009, 19, 074019.	2.6	9
167	A 3D Ferrite Coil Receiver for Wireless Power Supply of Endoscopic Capsules. Procedia Chemistry, 2009, 1, 477-480.	0.7	13
168	Etch rate optimization in reactive ion etching of epoxy photoresists. Procedia Chemistry, 2009, 1, 796-799.	0.7	6
169	SU-8 thermo-compressive packaging for post-CMOS poly-SiGe MEMS. Procedia Chemistry, 2009, 1, 1539-1542.	0.7	4
170	Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectronics Journal, 2009, 40, 1313-1321.	2.0	64
171	Accurate measurement of the steady-state swelling behavior of SU-8 negative photo resist. Procedia Chemistry, 2009, 1, 60-63.	0.7	8
172	Biaxial and Uniaxial Epoxy Accelerometers. Procedia Chemistry, 2009, 1, 572-575.	0.7	3
173	Low voltage electrostatic inchworm actuators in aqueous environments. Procedia Chemistry, 2009, 1, 686-689.	0.7	3
174	Textile Integrated Breathing and ECG Monitoring System. Procedia Chemistry, 2009, 1, 722-725.	0.7	30
175	An Autonomous, Capacitive Sensor Based and Battery Powered Internal Bladder Pressure Monitoring System. Procedia Chemistry, 2009, 1, 1263-1266.	0.7	8
176	Effect of substrate charging on the reliability of capacitive RF MEMS switches. Sensors and Actuators A: Physical, 2009, 154, 261-268.	4.1	32
177	Design of a 2Mbps FSK near-field transmitter for wireless capsule endoscopy. Sensors and Actuators A: Physical, 2009, 156, 43-48.	4.1	59
178	Saw-tooth vernier ratchets for electrostatic inchworm actuators. Sensors and Actuators A: Physical, 2009, 156, 66-71.	4.1	11
179	Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sensors and Actuators A: Physical, 2009, 156, 79-87.	4.1	96
180	Determining the Young's modulus and creep effects in three different photo definable epoxies for MEMS applications. Sensors and Actuators A: Physical, 2009, 156, 196-200.	4.1	37

#	Article	IF	CITATIONS
181	Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors and Bioelectronics, 2009, 25, 845-851.	10.1	129
182	Deep etching of glass wafers using sputtered molybdenum masks. Journal of Micromechanics and Microengineering, 2009, 19, 067001.	2.6	20
183	An optical absolute pressure sensor for high-temperature applications, fabricated directly on a fiber. Journal of Micromechanics and Microengineering, 2009, 19, 115017.	2.6	8
184	Microsized Piston-Cylinder Pneumatic and Hydraulic Actuators Fabricated by Lithography. Journal of Microelectromechanical Systems, 2009, 18, 1100-1104.	2.5	20
185	AlCuMgMn micro-tensile samples. Sensors and Actuators A: Physical, 2008, 143, 120-128.	4.1	11
186	Modelling, characterization and testing of an ortho-planar micro-valve. Journal of Micro-Nano Mechatronics, 2008, 4, 131-143.	1.0	11
187	A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sensors and Actuators A: Physical, 2008, 142, 361-368.	4.1	38
188	Characterization and control of a pneumatic microactuator with an integrated inductive position sensor. Sensors and Actuators A: Physical, 2008, 141, 192-200.	4.1	28
189	Automatic inductance compensation for class E driven flexible coils. Sensors and Actuators A: Physical, 2008, 145-146, 154-160.	4.1	11
190	A power and data front-end IC for biomedical monitoring systems. Sensors and Actuators A: Physical, 2008, 147, 641-648.	4.1	12
191	A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems. IEEE Journal of Solid-State Circuits, 2008, 43, 3025-3038.	5.4	199
192	A Low-Voltage Large-Displacement Large-Force Inchworm Actuator. Journal of Microelectromechanical Systems, 2008, 17, 1294-1301.	2.5	31
193	A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems. , 2008, , .		41
194	Effect of Implant Surface Roughness and Loading on Periâ€Implant Bone Formation. Journal of Periodontology, 2008, 79, 150-157.	3.4	58
195	Feasibility of in utero Telemetric Fetal ECG Monitoring in a Lamb Model. Fetal Diagnosis and Therapy, 2008, 24, 81-85.	1.4	7
196	A PDMS lipseal for hydraulic and pneumatic microactuators. Journal of Micromechanics and Microengineering, 2007, 17, 1232-1237.	2.6	28
197	Stress release structures for actuator beams with a stress gradient. Journal of Micromechanics and Microengineering, 2007, 17, 2093-2101.	2.6	1
198	An electrostatic fringing-field actuator (EFFA): application towards a low-complexity thin-film RF-MEMS technology. Journal of Micromechanics and Microengineering, 2007, 17, S204-S210.	2.6	31

#	Article	IF	CITATIONS
199	A 60 \$mu\$W 60 nV/\$surd\$Hz Readout Front-End for Portable Biopotential Acquisition Systems. IEEE Journal of Solid-State Circuits, 2007, 42, 1100-1110.	5.4	308
200	Ultra-Low-Power Interface Chip for Autonomous Capacitive Sensor Systems. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 130-140.	0.1	96
201	Failure Mechanisms in MEMS/NEMS Devices. , 2007, , 1663-1684.		10
202	Design and Packaging of a Fully Autonomous Medical Monitoring System for Dental Applications. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 200-208.	0.1	3
203	An inductive power link for a wireless endoscope. Biosensors and Bioelectronics, 2007, 22, 1390-1395.	10.1	179
204	Generic architectures and design methods for autonomous sensors. Sensors and Actuators A: Physical, 2007, 135, 881-888.	4.1	39
205	The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit. European Journal of Oral Sciences, 2007, 115, 21-29.	1.5	76
206	Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit. Clinical Oral Implants Research, 2007, 18, 471-480.	4.5	50
207	Influence of controlled immediate loading and implant design on peri-implant bone formation. Journal of Clinical Periodontology, 2007, 34, 172-81.	4.9	53
208	Sensors and sensorsystems for in vivo monitoring. , 2006, , .		1
209	Merits and pitfalls of implantable wireless monitoring systems. , 2006, , .		2
210	Microelectromechanical tunable capacitors for reconfigurable RF architectures. Journal of Micromechanics and Microengineering, 2006, 16, 601-611.	2.6	36
211	Pattern transfer over extreme topographies using a SU-8 leveling process. , 2006, , .		0
212	Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part I: Working principle. Forensic Science International, 2006, 159, S33-S39.	2.2	36
213	Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part 2: Physical properties. Forensic Science International, 2006, 159, S40-S46.	2.2	13
214	Integrating wireless ECG monitoring in textiles. Sensors and Actuators A: Physical, 2006, 130-131, 48-53.	4.1	135
215	Creating multi-layered structures with freestanding parts in SU-8. Journal of Micromechanics and Microengineering, 2006, 16, S19-S23.	2.6	37
216	Low-Power Low-Noise 8-Channel EEG Front-End ASIC for Ambulatory Acquisition Systems. , 2006, , .		23

#	Article	IF	CITATIONS
217	On the optimization of ultra low power front-end interfaces for capacitive sensors. Sensors and Actuators A: Physical, 2005, 117, 273-285.	4.1	31
218	Inductive powering of a freely moving system. Sensors and Actuators A: Physical, 2005, 123-124, 522-530.	4.1	68
219	A novel hydraulic microactuator sealed by surface tension. Sensors and Actuators A: Physical, 2005, 123-124, 547-554.	4.1	22
220	A portable multi-sensor data-logger for medical surveillance in harsh environments. Sensors and Actuators A: Physical, 2005, 123-124, 423-429.	4.1	8
221	Design methods and algorithms for configurable capacitive sensor interfaces. Sensors and Actuators A: Physical, 2005, 125, 25-33.	4.1	12
222	Production and characterization of a hydraulic microactuator. Journal of Micromechanics and Microengineering, 2005, 15, S15-S21.	2.6	27
223	Creep-resistant aluminum alloys for use in MEMS. Journal of Micromechanics and Microengineering, 2005, 15, S165-S170.	2.6	36
224	The influence of mechanical shock on the operation of electrostatically driven RF-MEMS switches. Journal of Micromechanics and Microengineering, 2004, 14, S49-S54.	2.6	41
225	Implant design and interface force transfer. Clinical Oral Implants Research, 2004, 15, 249-257.	4.5	124
226	Characterization and failure analysis of MEMS: high resolution optical investigation of small out-of-plane movements and fast vibrations. Microsystem Technologies, 2004, 10, 89-96.	2.0	23
227	Creep as a reliability problem in MEMS. Microelectronics Reliability, 2004, 44, 1733-1738.	1.7	44
228	A readout circuit for an intra-ocular pressure sensor. Sensors and Actuators A: Physical, 2004, 110, 432-438.	4.1	59
229	Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 2004, 114, 302-311.	4.1	267
230	An inductive power system with integrated bi-directional data-transmission. Sensors and Actuators A: Physical, 2004, 115, 221-229.	4.1	136
231	A repeated sampling bone chamber methodology for the evaluation of tissue differentiation and bone adaptation around titanium implants under controlled mechanical conditions. Journal of Biomechanics, 2004, 37, 1819-1822.	2.1	32
232	Creep characterization of Al alloy thin films for use in MEMS applications. Microelectronic Engineering, 2004, 76, 272-278.	2.4	46
233	A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. Journal of Micromechanics and Microengineering, 2004, 14, 514-521.	2.6	227
234	A wet release process for fabricating slender and compliant suspended micro-mechanical structures. Sensors and Actuators A: Physical, 2003, 103, 202-212.	4.1	10

#	Article	IF	CITATIONS
235	A 136-μw/channel autonomous strain-gauge datalogger. IEEE Journal of Solid-State Circuits, 2003, 38, 2280-2287.	5.4	8
236	The prediction of stiction failures in MEMS. IEEE Transactions on Device and Materials Reliability, 2003, 3, 167-172.	2.0	39
237	On the physics of stiction and its impact on the reliability of microstructures. Journal of Adhesion Science and Technology, 2003, 17, 563-582.	2.6	95
238	Micro-electro-discharge machining as microsensor fabrication technology. IEEE Sensors Journal, 2003, 3, 632-639.	4.7	10
239	A low frequency electrical test set-up for the reliability assessment of capacitive RF MEMS switches. Journal of Micromechanics and Microengineering, 2003, 13, 604-612.	2.6	43
240	High-Q integrated RF passives and RF-MEMS on silicon. Materials Research Society Symposia Proceedings, 2003, 783, 311.	0.1	18
241	Pull-in voltage analysis of electrostatically actuated beam structures with fixed\$ndash\$fixed and fixed\$ndash\$free end conditions. Journal of Micromechanics and Microengineering, 2002, 12, 458-464.	2.6	320
242	A 40-μA/channel compensated 18-channel strain gauge measurement system for stress monitoring in dental implants. IEEE Journal of Solid-State Circuits, 2002, 37, 293-301.	5.4	34
243	A physical model to predict stiction in MEMS. Journal of Micromechanics and Microengineering, 2002, 12, 702-713.	2.6	184
244	Finite Element Studies on the Role of Mechanical Loading in Bone Response Around Oral Implants*. Meccanica, 2002, 37, 441-451.	2.0	7
245	Fabrication and testing of custom vacuum encapsulations deposited by focused ion beam direct-write CVD. Sensors and Actuators A: Physical, 2001, 92, 249-256.	4.1	12
246	A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001, 11, 287-300.	2.6	592
247	Experimental characterization of the reference channel of a differential pressure sensor using pressure shock waves. Journal of Micromechanics and Microengineering, 2001, 11, 390-396.	2.6	1
248	A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sensors and Actuators A: Physical, 2000, 85, 42-47.	4.1	73
249	Towards the limits in detecting low-level strain with multiple piezo-resistive sensors. Sensors and Actuators A: Physical, 2000, 85, 395-401.	4.1	5
250	A new concept for a self-testable pressure sensor based on the bimetal effect. Sensors and Actuators A: Physical, 2000, 82, 69-73.	4.1	15
251	Thermostatic control for temperature compensation of a silicon pressure sensor. Sensors and Actuators A: Physical, 2000, 82, 120-127.	4.1	19
252	Magnitude and distribution of occlusal forces on oral implants supporting fixed prostheses: an in vivo study. Clinical Oral Implants Research, 2000, 11, 465-475.	4.5	155

#	Article	IF	CITATIONS
253	Concept, design and fabrication of smart orthopedic implants. Medical Engineering and Physics, 2000, 22, 469-479.	1.7	93
254	Influence of Prosthesis Material on the Loading of Implants That Support a Fixed Partial Prosthesis: In Vivo Study. Clinical Implant Dentistry and Related Research, 2000, 2, 100-109.	3.7	17
255	Electrodeposited copper inductors for intraocular pressure telemetry. Journal of Micromechanics and Microengineering, 2000, 10, 124-129.	2.6	97
256	Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young's modulus of the deposited material. Journal of Micromechanics and Microengineering, 2000, 10, 181-188.	2.6	65
257	Integrating electro-discharge machining and photolithography: work in progress. Journal of Micromechanics and Microengineering, 2000, 10, 189-195.	2.6	12
258	Sensor, sensor interfacing and front-end data management for stand-alone microsystems. Journal of Micromechanics and Microengineering, 1999, 9, R1-R7.	2.6	7
259	Production of seismic mass suspensions in silicon by electro-discharge machining. Journal of Micromechanics and Microengineering, 1999, 9, 206-210.	2.6	10
260	A combined piezoresistive/capacitive pressure sensor with self-test function based on thermal actuation. Sensors and Actuators A: Physical, 1998, 66, 70-75.	4.1	21
261	On the mechanisms in thermally actuated composite diaphragms. Sensors and Actuators A: Physical, 1998, 67, 13-17.	4.1	15
262	Design and processing experiments of a new miniaturized capacitive triaxial accelerometer. Sensors and Actuators A: Physical, 1998, 68, 324-328.	4.1	36
263	The characterization of a miniature silicon micromachined capacitive accelerometer. Journal of Micromechanics and Microengineering, 1998, 8, 127-133.	2.6	15
264	Electrical characterization of anodically bonded wafers. Journal of Micromechanics and Microengineering, 1998, 8, 69-73.	2.6	14
265	Bonding wafers with sodium silicate solution. Journal of Micromechanics and Microengineering, 1997, 7, 114-117.	2.6	22
266	Electrostatic actuation as a self-testing method for silicon pressure sensors. Sensors and Actuators A: Physical, 1997, 60, 32-36.	4.1	11
267	A novel combined redundant pressure sensor with self-test function. Sensors and Actuators A: Physical, 1997, 60, 68-71.	4.1	17
268	Corrugated silicon nitride membranes as suspensions in micromachined silicon accelerometers. Journal of Micromechanics and Microengineering, 1996, 6, 73-76.	2.6	20
269	Self-tuning inductive powering for implantable telemetric monitoring systems. Sensors and Actuators A: Physical, 1996, 52, 1-7.	4.1	32
270	A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique. Sensors and Actuators A: Physical, 1996, 53, 261-266.	4.1	10

#	ARTICLE	IF	CITATIONS
271	Linking sensors with telemetry: impact on the system design. Sensors and Actuators A: Physical, 1996, 52, 169-174.	4.1	18
272	Electrostatic forces and their effects on capacitive mechanical sensors. Sensors and Actuators A: Physical, 1996, 56, 203-210.	4.1	87
273	CMOS foundry-based micromachining. Journal of Micromechanics and Microengineering, 1996, 6, 122-127.	2.6	25
274	Active metal brazing for joining glass-ceramic to titanium?a study on silver enrichment. Journal of Materials Science: Materials in Medicine, 1995, 6, 835-838.	3.6	8
275	PHET, an electrodeless photovoltaic electrochemical etchstop technique. Journal of Microelectromechanical Systems, 1994, 3, 113-123.	2.5	25
276	A low power multi-sensor interface for injectable microprocessor-based animal monitoring system. Sensors and Actuators A: Physical, 1994, 41, 198-206.	4.1	16
277	A multi-purpose CMOS sensor interface for low-power applications. IEEE Journal of Solid-State Circuits, 1994, 29, 952-956.	5.4	27
278	Capacitive sensors: When and how to use them. Sensors and Actuators A: Physical, 1993, 37-38, 93-105.	4.1	247