Zongyun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815803/publications.pdf

Version: 2024-02-01

57 papers	1,464 citations	22 h-index	377865 34 g-index
60	60	60	1321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biology, 2018, 18, 83.	3.6	119
2	Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H+–ATPase Activity and K+/Na+ Homeostasis in Sweet Potato. Frontiers in Plant Science, 2018, 9, 256.	3.6	101
3	RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC Plant Biology, 2019, 19, 136.	3.6	78
4	NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea) Tj ETQq0 0 0 r Experimental Botany, 2016, 129, 23-36.		lock 10 Tf 50 70
5	Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genetics, 2019, 20, 41.	2.7	63
6	Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid <i>Ipomoea trifida</i> Ipomoea trifidaIpomoea	4.8	48
7	High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics, 2020, 21, 164.	2.8	46
8	Research Progress of Betalain in Response to Adverse Stresses and Evolutionary Relationship Compared with Anthocyanin. Molecules, 2019, 24, 3078.	3.8	43
9	Genome-wide identification, characterisation and functional evaluation of WRKY genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.) G. Don. under abiotic stresses. BMC Genetics, 2019, 20, 90.	2.7	42
10	Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene, 2019, 686, 177-186.	2.2	42
11	Comparative Metabolomic and Transcriptome Analysis Reveal Distinct Flavonoid Biosynthesis Regulation Between Petals of White and Purple Phalaenopsis amabilis. Journal of Plant Growth Regulation, 2020, 39, 823-840.	5.1	42
12	Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of IbNAC7 Confers Salt Tolerance in Arabidopsis. Frontiers in Plant Science, 2020, 11, 572540.	3.6	42
13	Genome-wide analysis of expression quantitative trait loci (eQTLs) reveals the regulatory architecture of gene expression variation in the storage roots of sweet potato. Horticulture Research, 2020, 7, 90.	6.3	38
14	Calcium-Mobilizing Properties of <i>Salvia miltiorrhiza</i> -Derived Carbon Dots Confer Enhanced Environmental Adaptability in Plants. ACS Nano, 2022, 16, 4357-4370.	14.6	35
15	A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics, 2013, 14, 461.	2.8	33
16	Isolation, Expression Analysis, and Function Evaluation of 12 Novel Stressâ€Responsive Genes of NAC Transcription Factors in Sweetpotato. Crop Science, 2018, 58, 1328-1341.	1.8	33
17	NaCl-elicited, vacuolar Ca2+ release facilitates prolonged cytosolic Ca2+ signaling in the salt response of Populus euphratica cells. Cell Calcium, 2015, 57, 348-365.	2.4	32
18	Targeting of SPCSVâ€ <i>RNase3</i> via CRISPR as13 confers resistance against sweet potato virus disease. Molecular Plant Pathology, 2022, 23, 104-117.	4.2	32

#	Article	IF	CITATIONS
19	Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida. BMC Genomics, 2019, 20, 911.	2.8	31
20	Chilling and Heat Stress-Induced Physiological Changes and MicroRNA-Related Mechanism in Sweetpotato (Ipomoea batatas L.). Frontiers in Plant Science, 2020, 11, 687.	3.6	30
21	Involvement of Phosphatidylserine and Triacylglycerol in the Response of Sweet Potato Leaves to Salt Stress. Frontiers in Plant Science, 2019, 10, 1086.	3 . 6	28
22	The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 4898.	4.1	25
23	High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas) Tj ETQq $1\ 1\ 0.$	784314 2.9	rgB <u>T</u> /Overloc
24	Drought-Induced Responses of Nitrogen Metabolism in Ipomoea batatas. Plants, 2020, 9, 1341.	3.5	24
25	Characterization of a Novel Chitinase from Sweet Potato and Its Fungicidal Effect against <i>Ceratocystis fimbriata</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 7591-7600.	5.2	23
26	A Single Nucleotide Deletion in <i>Gibberellin20-oxidase1</i> Causes Alpine Dwarfism in Arabidopsis. Plant Physiology, 2015, 168, 930-937.	4.8	22
27	Overexpression of phosphatidylserine synthase lbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots. Horticulture Research, 2020, 7, 131.	6.3	21
28	High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature. Scientific Reports, 2017, 7, 16578.	3.3	20
29	<i>SISTE1</i> promotes abscisic acidâ€dependent salt stressâ€responsive pathways via improving ion homeostasis and reactive oxygen species scavenging in tomato. Journal of Integrative Plant Biology, 2020, 62, 1942-1966.	8.5	19
30	Genome-wide in silico identification and expression analysis of beta-galactosidase family members in sweetpotato [Ipomoea batatas (L.) Lam]. BMC Genomics, 2021, 22, 140.	2.8	18
31	Identification of candidate miRNAs related in storage root development of sweet potato by high throughput sequencing. Journal of Plant Physiology, 2020, 251, 153224.	3.5	17
32	Identification, expression analysis, and function evaluation of 42 tomato DEAD-box RNA helicase genes in growth development and stress response. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	16
33	Improving CRISPRâ€Casâ€mediated RNA targeting and gene editing using SPLCV repliconâ€based expression vectors in <i>Nicotiana benthamiana</i> >. Plant Biotechnology Journal, 2020, 18, 1993-1995.	8.3	15
34	Functional characteristic analysis of three odorantâ€binding proteins from the sweet potato weevil () Tj ETQq0 0 Science, 2021, 77, 300-312.	0 rgBT / 3.4	Overlock 10 Tr 14
35	Comparative Transcriptome Analysis Reveals Key Genes and Pathways Involved in Prickle Development in Eggplant. Genes, 2021, 12, 341.	2.4	14
36	Molecular characterization of nine sweet potato (<i>lpomoea batatas</i> Lam.) <scp>MADS</scp> â€box transcription factors during storage root development and following abiotic stress. Plant Breeding, 2018, 137, 790-804.	1.9	13

#	Article	IF	CITATIONS
37	A bacterial Fâ€box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice. Plant Journal, 2020, 104, 1054-1072.	5.7	12
38	Potassium Fertilization Stimulates Sucrose-to-Starch Conversion and Root Formation in Sweet Potato (Ipomoea batatas (L.) Lam.). International Journal of Molecular Sciences, 2021, 22, 4826.	4.1	12
39	Molecular Characterization and Target Prediction of Candidate miRNAs Related to Abiotic Stress Responses and/or Storage Root Development in Sweet Potato. Genes, 2022, 13, 110.	2.4	12
40	High Soil Available Phosphorus Favors Carbon Metabolism in Cotton Leaves in Pot Trials. Journal of Plant Growth Regulation, 2021, 40, 974-985.	5.1	11
41	Three chemosensory proteins from the sweet potato weevil, <scp><i>Cylas formicarius</i><td>3.4</td><td>11</td></scp>	3.4	11
42	Expression of IbVPE1 from sweet potato in Arabidopsis affects leaf development, flowering time and chlorophyll catabolism. BMC Plant Biology, 2019, 19, 184.	3.6	10
43	A systematic comparison of eight new plastome sequences from <i>Ipomoea</i> L. PeerJ, 2019, 7, e6563.	2.0	10
44	Comparative Chromosomal Localization of 45S and 5S rDNA Sites in 76 Purple-Fleshed Sweet Potato Cultivars. Plants, 2020, 9, 865.	3.5	9
45	Identification, expression analysis, and functional characterization of salt stressâ€responsive genes of AP2/ERF transcription factors in sweetpotato. Crop Science, 2020, 60, 3247-3260.	1.8	9
46	Selection of stable reference genes for gene expression analysis in sweet potato (Ipomoea batatas L.). Molecular and Cellular Probes, 2020, 53, 101610.	2.1	9
47	Karyotypic stability of Fragaria (strawberry) species revealed by cross-species chromosome painting. Chromosome Research, 2021, , 1.	2.2	8
48	Differential response of physiology and metabolic response to drought stress in different sweetpotato cultivars. PLoS ONE, 2022, 17, e0264847.	2.5	8
49	Heat shock responses in Populus euphratica cell cultures: important role of crosstalk among hydrogen peroxide, calcium and potassium. Plant Cell, Tissue and Organ Culture, 2016, 125, 215-230.	2.3	6
50	Comparative karyotype analysis among six species of Ipomoea based on two newly identified repetitive sequences. Genome, 2019, 62, 243-252.	2.0	6
51	Comparative Analysis of the Complete Mitochondrial Genomes for Development Application. Frontiers in Genetics, 2019, 9, 651.	2.3	4
52	High-Density Single Nucleotide Polymorphisms Genetic Map Construction and Quantitative Trait Locus Mapping of Color-Related Traits of Purple Sweet Potato [Ipomoea batatas (L.) Lam.]. Frontiers in Plant Science, 2021, 12, 797041.	3.6	4
53	Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato. Genes, 2022, 13, 404.	2.4	4
54	Comparative Analysis of Anthocyanin Compositions and Starch Physiochemical Properties of Purple-Fleshed Sweetpotato "Xuzishu8―in Desert Regions of China. Frontiers in Plant Science, 2022, 13, 841969.	3.6	3

Zongyun Li

#	Article	IF	CITATIONS
55	The sweetpotato GIGANTEA gene promoter is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 168, 143-154.	5.8	2
56	1-Butanol triggers programmed cell death in Populus euphratica cell cultures. Plant Growth Regulation, 2014, 74, 33-45.	3.4	1
57	The complete mitochondrial genome of the Placidochromis longimanus. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 340-341.	0.7	0