Inga-Lill Martensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. Journal of Experimental Medicine, 2022, 219, .	8.5	13
2	RAG1 coâ€expression signature identifies ETV6â€RUNX1â€like Bâ€cell precursor acute lymphoblastic leukemia in children. Cancer Medicine, 2021, 10, 3997-4003.	2.8	2
3	Moderate- to high intensity aerobic and resistance exercise reduces peripheral blood regulatory cell populations in older adults with rheumatoid arthritis. Immunity and Ageing, 2020, 17, 12.	4.2	15
4	Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nature Communications, 2019, 10, 4333.	12.8	211
5	CD21 ^{â^'/low} B cells associate with joint damage in rheumatoid arthritis patients. Scandinavian Journal of Immunology, 2019, 90, e12792.	2.7	33
6	Dissecting Integrin Expression and Function on Memory B Cells in Mice and Humans in Autoimmunity. Frontiers in Immunology, 2019, 10, 534.	4.8	15
7	Switched CD21–/low B cells with an antigen-presenting phenotype in the infant thymus. Journal of Allergy and Clinical Immunology, 2019, 143, 1616-1620.e7.	2.9	4
8	ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Reports, 2019, 29, 2756-2769.e6.	6.4	7
9	<scp>CD</scp> 99 expression is strongly associated with clinical outcome in children with Bâ€cell precursor acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 184, 418-423.	2.5	8
10	Ageâ€associatedÂBÂcells expanded in autoimmune mice are memory cells sharing H DR3â€selected repertoires. European Journal of Immunology, 2018, 48, 509-521.	2.9	28
11	The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Frontiers in Immunology, 2018, 9, 2423.	4.8	45
12	Long-Lived Plasma Cells in Mice and Men. Frontiers in Immunology, 2018, 9, 2673.	4.8	76
13	Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nature Communications, 2018, 9, 2067.	12.8	66
14	Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Research and Therapy, 2018, 20, 84.	3.5	79
15	Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis. PLoS ONE, 2016, 11, e0154630.	2.5	8
16	CD21–/low B cells in human blood are memory cells. Clinical and Experimental Immunology, 2016, 185, 252-262.	2.6	69
17	Collagen epitope expression on B cells is sufficient to confer tolerance to collagen-induced arthritis. Arthritis Research and Therapy, 2016, 18, 140.	3.5	8
18	The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia, PLoS ONF, 2016, 11, e0162638	2.5	25

#	Article	IF	CITATIONS
19	Surrogate light chain is required for central and peripheral Bâ€cell tolerance and inhibits antiâ€ÐNA antibody production by marginal zone B cells. European Journal of Immunology, 2015, 45, 1228-1237.	2.9	10
20	<scp>CD</scp> 21 ^{â^'/low} B cells: A Snapshot of a Unique B Cell Subset in Health and Disease. Scandinavian Journal of Immunology, 2015, 82, 254-261.	2.7	68
21	Androgens Regulate Bone Marrow B Lymphopoiesis in Male Mice by Targeting Osteoblast-Lineage Cells. Endocrinology, 2015, 156, 1228-1236.	2.8	16
22	Absence of surrogate light chain results in spontaneous autoreactive germinal centres expanding VH81X-expressing B cells. Nature Communications, 2015, 6, 7077.	12.8	16
23	Memory B Cells in Mouse Models. Scandinavian Journal of Immunology, 2013, 78, 149-156.	2.7	27
24	MiR-210 Is Induced by Oct-2, Regulates B Cells, and Inhibits Autoantibody Production. Journal of Immunology, 2013, 191, 3037-3048.	0.8	48
25	Uncoupling of Natural IgE Production and CD23 Surface Expression Levels. PLoS ONE, 2013, 8, e62851.	2.5	2
26	Autoantibodies: Focus on anti-DNA antibodies. Self/nonself, 2011, 2, 11-18.	2.0	18
27	The preâ€B cell receptor checkpoint. FEBS Letters, 2010, 584, 2572-2579.	2.8	57
28	Censoring of Autoreactive B Cell Development by the Pre-B Cell Receptor. Science, 2008, 321, 696-699.	12.6	136
29	B-lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor cells. Blood, 2008, 112, 1048-1055.	1.4	72
30	Silencing and Nuclear Repositioning of the λ5 Gene Locus at the Pre-B Cell Stage Requires Aiolos and OBF-1. PLoS ONE, 2008, 3, e3568.	2.5	19
31	Cutting Edge: The PI3K p110δIs Required for Down-Regulation of RAG Expression in Immature B Cells. Journal of Immunology, 2007, 178, 1981-1985.	0.8	52
32	The pre-B-cell receptor. Current Opinion in Immunology, 2007, 19, 137-142.	5.5	92
33	Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO Journal, 2007, 26, 4273-4282.	7.8	32
34	Only VpreB1, but not VpreB2, is expressed at levels which allow normal development of B cells. International Immunology, 2006, 18, 163-172.	4.0	12
35	The pre-B-cell receptor induces silencing of VpreB and λ5 transcription. EMBO Journal, 2005, 24, 3895-3905.	7.8	43
36	Both the pre-BCR and the IL-7Rα are essential for expansion at the pre-BII cell stagein vivo. European Journal of Immunology, 2005, 35, 1969-1976.	2.9	25

#	Article	IF	CITATIONS
37	OX40 Ligand and CD30 Ligand Are Expressed on Adult but Not Neonatal CD4+CD3â^' Inducer Cells: Evidence That IL-7 Signals Regulate CD30 Ligand but Not OX40 Ligand Expression. Journal of Immunology, 2005, 174, 6686-6691.	0.8	74
38	Surface μ Heavy Chain Signals Down-Regulation of the V(D)J-Recombinase Machinery in the Absence of Surrogate Light Chain Components. Journal of Experimental Medicine, 2004, 199, 1523-1532.	8.5	55
39	Impaired B-1 and B-2 B cell development and atypical splenic B cell structures in IL-7 receptor-deficient mice. European Journal of Immunology, 2004, 34, 3595-3603.	2.9	28
40	The VpreB1 enhancer drives developmental stage-specific gene expression in vivo. European Journal of Immunology, 2003, 33, 1117-1126.	2.9	3
41	Complementary Signaling through flt3 and Interleukin-7 Receptor α Is Indispensable for Fetal and Adult B Cell Genesis. Journal of Experimental Medicine, 2003, 198, 1495-1506.	8.5	157
42	VpreB1/VpreB2/λ5 Triple-Deficient Mice Show Impaired B Cell Development but Functional Allelic Exclusion of the <i>IgH</i> Locus. Journal of Immunology, 2002, 168, 6286-6293.	0.8	128
43	The pre-B cell receptor and its role in proliferation and Ig heavy chain allelic exclusion. Seminars in Immunology, 2002, 14, 335-342.	5.6	59
44	PEBP2 and c-myb sites crucial for λ5 core enhancer activity in pre-B cells. European Journal of Immunology, 2001, 31, 3165-3174.	2.9	20
45	Loss of Precursor B Cell Expansion but Not Allelic Exclusion in VpreB1/VpreB2 Double-Deficient Mice. Journal of Experimental Medicine, 2001, 193, 435-446.	8.5	87
46	Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice. International Immunology, 1999, 11, 453-460.	4.0	26
47	Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genetics, 1998, 19, 125-133.	21.4	719
48	Identification of a tissue- and differentiation stage-specific enhancer of the VpreB1 gene. European Journal of Immunology, 1998, 28, 787-798.	2.9	21
49	Identification of a tissue- and differentiation stage-specific enhancer of the VpreB1 gene. European Journal of Immunology, 1998, 28, 787-798.	2.9	1
50	A Transgenic Marker for Mouse B Lymphoid Precursors. Journal of Experimental Medicine, 1997, 185, 653-662.	8.5	52
51	Early B cell factor binds to a site critical for λ5 core enhancer activity. European Journal of Immunology, 1997, 27, 315-320.	2.9	25
52	The murine VpreB1 and VpreB2 genes both encode a protein of the surrogate light chain and are co-expressed during B cell development. European Journal of Immunology, 1996, 26, 906-913.	2.9	31
53	The c-myc protein represses the λ5 and TdT initiators. Nucleic Acids Research, 1995, 23, 1-9.	14.5	53
54	Pre-B cell-specific λ5 gene expression due to suppression in non pre-B cells. International Immunology, 1994, 6, 863-872.	4.0	27

INGA-LILL MARTENSSON

#	Article	IF	CITATIONS
55	Two Pathways of B-Lymphocyte Development in Mouse Bone Marrow and the Roles of Surrogate L Chain in this Development. Immunological Reviews, 1994, 137, 185-201.	6.0	54
56	Regulation of interleukin 2 gene expression: discrepancy between enhancer activity and endogenous gene expression. European Journal of Immunology, 1989, 19, 145-149.	2.9	8
57	Regulation of immunoglobulin gene expression intrans by phorbol esters. European Journal of Immunology, 1989, 19, 1497-1500.	2.9	2
58	Transcriptional regulation of immunoglobulin expression in a chronic lymphocytic leukemia cell line. European Journal of Immunology, 1989, 19, 1625-1629.	2.9	4
59	Transient gene expression in untransformed lymphocytes. European Journal of Immunology, 1987, 17, 1499-1502.	2.9	20