Ali Salajegheh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8815071/publications.pdf Version: 2024-02-01

Διι δλιλιες μεμ

#	Article	IF	CITATIONS
1	miR-205 targets angiogenesis and EMT concurrently in anaplastic thyroid carcinoma. Endocrine-Related Cancer, 2018, 25, 323-337.	1.6	48
2	Recent contributions of anatomical pathologists to the scientific literature in Australia: A bibliographic analysis. Pathology, 2018, 50, S72.	0.3	0
3	Evaluation of multidisciplinary strategies and traditional approaches in teaching pathology in medical students. Pathology International, 2018, 68, 459-466.	0.6	13
4	The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine, 2017, 58, 153-166.	1.1	20
5	Integration of Traditional and Eâ€Learning Methods to Improve Learning Outcomes for Dental Students in Histopathology. Journal of Dental Education, 2016, 80, 1140-1148.	0.7	54
6	Enhancing pathology learning experience of medical students using multiple advanced learning and teaching strategies. Pathology, 2016, 48, S57.	0.3	1
7	A combination of traditional learning and e-learning can be more effective on radiological interpretation skills in medical students: a pre- and post-intervention study. BMC Medical Education, 2016, 16, 46.	1.0	55
8	Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine, 2016, 54, 129-138.	1.1	7
9	Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Human Pathology, 2016, 51, 75-85.	1.1	34
10	The expression profiles of the galectin gene family in colorectal adenocarcinomas. Human Pathology, 2016, 53, 105-113.	1.1	13
11	Angiogenesis in Health, Disease and Malignancy. , 2016, , .		11
12	Erythropoietin-Producing Hepatocellular Receptors B: Ephrin B2, Ephrin B4. , 2016, , 89-96.		1
13	Granulocyte-Macrophage and Granulocyte Colony Stimulating Factor (GM-CSF and G-CSF). , 2016, , 127-132.		1
14	Platelet-Activating Factor. , 2016, , 253-260.		2
15	Placenta Growth Factor (PIGF). , 2016, , 261-266.		1
16	Urokinase Plasminogen Activator. , 2016, , 357-361.		2
17	Vascular Endothelial Growth Factor (VEGF). , 2016, , 363-374.		6

#	Article	IF	CITATIONS
19	Fibrin. , 2016, , 103-109.		0
20	Integrins. , 2016, , 169-180.		0
21	Zinc Finger E-Box Binding Homeobox 1 (ZEB1). , 2016, , 387-391.		1
22	Sprouty-Related, EVH1 Domain-Containing Protein 1 (SPRED-1). , 2016, , 297-300.		0
23	Angiopoietins. , 2016, , 21-28.		0
24	MDM4., 2016, , 199-202.		0
25	Tissue Factor Gene. , 2016, , 325-329.		0
26	Epidermal Growth Factor. , 2016, , 61-68.		0
27	Neutrophil Activating Protein-2 (NAP-2). , 2016, , 213-220.		0
28	SMAD4 (Mothers Against Decepentaplegic Homolog 4). , 2016, , 293-296.		0
29	Tsp-1. , 2016, , 345-350.		0
30	Fibroblast Growth Factors (Acidic: FGF-1; Basic: FGF-2) and Its Receptors (FGFR). , 2016, , 111-120.		0
31	Matrix Metalloproteinase 2 (MMP2). , 2016, , 203-208.		0
32	Insulin Receptor Substrate (IRS-1). , 2016, , 189-192.		0
33	PIK3R2 (p85β) – Phosphatidylinositol 3-Kinase β-Subunit. , 2016, , 245-251.		0
34	Tumour Necrosis Factor-α (TNF-α). , 2016, , 351-355.		0
35	Iron-Sulfur Clusters (ISCU). , 2016, , 193-198.		0
36	Epidermal Growth Factor Domain-Like 7 (EGFL7). , 2016, , 69-73.		0

0

#	Article	IF	CITATIONS
37	Fibronectin. , 2016, , 121-125.		1
38	Cysteine-Rich 61 (CYR61). , 2016, , 55-60.		0
39	GAX and HOXA5. , 2016, , 133-139.		Ο
40	SIRT1., 2016,, 287-292.		0
41	SUFU. , 2016, , 309-312.		Ο
42	Platelet-Derived Endothelial Cell Growth Factor (PDGF). , 2016, , 229-234.		0
43	C-KIT: Tyrosine Kinase Receptors with Potential to Initiate Angiogenesis. , 2016, , 33-36.		Ο
44	Cyclin D1 and E1. , 2016, , 37-42.		0
45	Angiotropin. , 2016, , 29-32.		Ο
46	Tenascins. , 2016, , 313-316.		0
47	Preproendothelin-1 (PreproET-1). , 2016, , 267-270.		Ο
48	Interleukins. , 2016, , 181-188.		0
49	Adenosine Triphosphate-Binding Cassette (ABC) Lipid Transporters. , 2016, , 11-15.		Ο
50	Heparanase. , 2016, , 141-145.		0
51	Transforming Growth Factor $\hat{I}\pm$ and \hat{I}^2 (TGF- $\hat{I}\pm$ and TGF- \hat{I}^2). , 2016, , 331-337.		Ο
52	Hepatocyte Growth Factor. , 2016, , 147-153.		0
53	Introduction to Angiogenesis in Normal Physiology, Disease and Malignancy. , 2016, , 1-9.		3

54 Insulin Like Growth Factor (IGF). , 2016, , 159-168.

4

#	Article	IF	CITATIONS
55	HIF-1α., 2016, , 155-158.		Ο
56	p27kip1 and p57Kip2 (CDKN1B and CDKN1C). , 2016, , 221-228.		0
57	Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase (PIK3Ca). , 2016, , 241-244.		0
58	Transforming Growth Factor Beta-Receptor Type II (TGFβR2). , 2016, , 339-343.		0
59	Signal Transducer and Activator of Transcription of 5A and S3 (STAT5 and STATS3). , 2016, , 301-308.		0
60	ROS 1. , 2016, , 281-285.		0
61	Vascular Cell Adhesion Molecule-1 (VCAM-1). , 2016, , 375-379.		1
62	Erythropoietin-Producing Hepatocellular Receptors A: Ephrin A1, Ephrin A2 and Ephrin A3. , 2016, , 75-87.		0
63	Cluster of Differentiation 71 (CD71). , 2016, , 43-46.		0
64	Integration of Traditional and E-Learning Methods to Improve Learning Outcomes for Dental Students in Histopathology. Journal of Dental Education, 2016, 80, 1140-8.	0.7	18
65	145 microRNA-126 affects proliferation of undifferentiated thyroid carcinoma. European Journal of Cancer, 2015, 51, S13.	1.3	0
66	Modulatory role of miR-205 in angiogenesis and progression of thyroid cancer. Journal of Molecular Endocrinology, 2015, 55, 183-196.	1.1	45
67	MicroRNA-126 suppresses proliferation of undifferentiated (BRAFV600E and BRAFWT) thyroid carcinoma through targeting PIK3R2 gene and repressing PI3K-AKT proliferation-survival signalling pathway. Experimental Cell Research, 2015, 339, 342-350.	1.2	17
68	Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Experimental and Molecular Pathology, 2015, 99, 492-497.	0.9	17
69	Regulation of microRNAâ€1288 in colorectal cancer: Altered expression and its clinicopathological significance. Molecular Carcinogenesis, 2014, 53, E36-44.	1.3	44
70	Expression profile of endothelin 1 and its receptor endothelin receptor A in papillary thyroid carcinoma and their correlations with clinicopathologic characteristics. Annals of Diagnostic Pathology, 2014, 18, 43-48.	0.6	17
71	The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Experimental and Molecular Pathology, 2014, 96, 212-218.	0.9	32
72	606: JK-1(FAM134B) gene implications in colorectal carcinoma: A gene expression and functional study. European Journal of Cancer, 2014, 50, S146.	1.3	0

Ali Salajegheh

#	Article	IF	CITATIONS
73	Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Experimental and Molecular Pathology, 2014, 97, 298-304.	0.9	60
74	The roles of JK-1 (FAM134B) expressions in colorectal cancer. Experimental Cell Research, 2014, 326, 166-173.	1.2	39
75	A review of the profile of endothelin axis in cancer and its management. Critical Reviews in Oncology/Hematology, 2014, 89, 314-321.	2.0	46
76	JK1 (FAM134B) gene and colorectal cancer: A pilot study on the gene copy number alterations and correlations with clinicopathological parameters. Experimental and Molecular Pathology, 2014, 97, 31-36.	0.9	29
77	BRAF inhibitors: From the laboratory to clinical trials. Critical Reviews in Oncology/Hematology, 2014, 90, 220-232.	2.0	35
78	JK1 (FAM134B) represses cell migration in colon cancer: a functional study of a novel gene. Experimental and Molecular Pathology, 2014, 97, 99-104.	0.9	27
79	Orofacial viral infections – an update for clinicians. Dental Update, 2014, 41, 518-524.	0.1	5
80	The Important Roles of miR-205 in Normal Physiology, Cancers and as a Potential Therapeutic Target. Current Cancer Drug Targets, 2014, 14, 621-637.	0.8	53
81	BRAF Inhibitor Therapy for Melanoma, Thyroid and Colorectal Cancers: Development of Resistance and Future Prospects. Current Cancer Drug Targets, 2014, 14, 128-143.	0.8	28
82	MicroRNA-34 Family, Mechanisms of Action in Cancer: A Review. Current Cancer Drug Targets, 2014, 14, 737-751.	0.8	34
83	Abstract 549: Gene expression changes of GAEC1 in a large cohort of human cancer tissues. , 2014, , .		Ο
84	Abstract 528: The modulatory role of miRNA 126 in thyroid cancer angiogenesis. , 2014, , .		1
85	B-Raf mutation: A key player in molecular biology of cancer. Experimental and Molecular Pathology, 2013, 95, 336-342.	0.9	53
86	Co-regulatory potential of vascular endothelial growth factor–A and vascular endothelial growth factor–C in thyroid carcinoma. Human Pathology, 2013, 44, 2204-2212.	1.1	45
87	Clinicopathological relevance of BRAF mutations in human cancer. Pathology, 2013, 45, 346-356.	0.3	131
88	Abstract 381: VEGF-A and VEGF-C: potential coregulators in angiogenic event in thyroid cancer , 2013, ,		0
89	Abstract 4134: miR1288 in colorectal cancers: Altered expression and its clinicopathological significance. , 2012, , .		0
90	Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: Potential markers for aggressive phenotypes. European Journal of Surgical Oncology, 2011, 37, 93-99.	0.5	60

Ali Salajegheh

#	Article	IF	CITATIONS
91	Myeloma-Induced Alloreactive T Cells Arising in Myeloma-Infiltrated Bones Include Double-Positive CD8+CD4+T Cells: Evidence from Myeloma-Bearing Mouse Model. Journal of Immunology, 2011, 187, 3987-3996.	0.4	8
92	Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Human Pathology, 2011, 42, 500-506.	1.1	54
93	15. Braf mutation in papillary thyroid carcinoma: new angles for an old foe. Pathology, 2011, 43, S93.	0.3	0
94	Novel oncogene GAEC1: involved in pathogenesis and potential use in differential diagnoses of thyroid tumours. Pathology, 2010, 42, S71.	0.3	0
95	GAEC1 and colorectal cancer: a study of the relationships between a novel oncogene and clinicopathologic features. Human Pathology, 2010, 41, 1009-1015.	1.1	21
96	Follicular variant of papillary thyroid carcinoma: a diagnostic challenge for clinicians and pathologists. Postgraduate Medical Journal, 2008, 84, 78-82.	0.9	56
97	Depletion of Host CD122+ Cells Facilitates Widespread Skeletal Multiple Myeloma Engraftment in NOD/SCID Recipients. Blood, 2008, 112, 2734-2734.	0.6	Ο