
Claire M Wade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8814971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canine coat pigmentation genetics: a review. Animal Genetics, 2022, 53, 3-34.	1.7	15
2	Forensic DNA phenotyping: <i>Canis familiaris</i> breed classification and skeletal phenotype prediction using functionally significant skeletal SNPs and indels. Animal Genetics, 2022, 53, 247-263.	1.7	5
3	Valued personality traits in livestock herding Kelpies—Development and application of a livestock herding dog assessment form. PLoS ONE, 2022, 17, e0267266.	2.5	0
4	Roan, ticked and clear coat patterns in the canine are associated with three haplotypes near <i>usherin</i> on CFA38. Animal Genetics, 2021, 52, 198-207.	1.7	4
5	Inbreeding levels in an open-registry pedigreed dog breed: The Australian working kelpie. Veterinary Journal, 2021, 269, 105609.	1.7	3
6	Genetics of canine myxomatous mitral valve disease. Animal Genetics, 2021, 52, 409-421.	1.7	9
7	Sequence variants of the canine melanocyte inducing transcription factor (<i>MITF</i>) locus reveal a common <i>MITFâ€A</i> processed pseudogene. Animal Genetics, 2021, 52, 777-778.	1.7	2
8	Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics, 2021, 22, 601.	2.8	3
9	A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed. Scientific Reports, 2020, 10, 18223.	3.3	4
10	Mapping the genetic basis of diabetes mellitus in the Australian Burmese cat (Felis catus). Scientific Reports, 2020, 10, 19194.	3.3	12
11	Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction. Genes, 2020, 11, 251.	2.4	9
12	Sequential Analysis of Livestock Herding Dog and Sheep Interactions. Animals, 2020, 10, 352.	2.3	3
13	The Perceived Value of Behavioural Traits in Australian Livestock Herding Dogs Varies with the Operational Context. Animals, 2019, 9, 448.	2.3	2
14	A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Animal Genetics, 2019, 50, 695-704.	1.7	138
15	The Burmese cat as a genetic model of type 2 diabetes in humans. Animal Genetics, 2019, 50, 319-325.	1.7	13
16	Genomic Characterization of External Morphology Traits in Kelpies Does Not Support Common Ancestry with the Australian Dingo. Genes, 2019, 10, 337.	2.4	11
17	Association between coat colour and the behaviour of Australian Labrador retrievers. Canine Genetics and Epidemiology, 2019, 6, 10.	2.8	5
18	Behavioral Genetics of Dog Breeds. , 2019, , 312-322.		2

Behavioral Genetics of Dog Breeds. , 2019, , 312-322. 18

#	Article	IF	CITATIONS
19	Using an owner-based questionnaire to phenotype dogs with separation-related distress: Do owners know what their dogs do when they are absent?. Journal of Veterinary Behavior: Clinical Applications and Research, 2018, 23, 58-65.	1.2	18
20	Work-type influences perceived livestock herding success in Australian Working Kelpies. Canine Genetics and Epidemiology, 2018, 5, 5.	2.8	4
21	Risk factors of separation-related behaviours in Australian retrievers. Applied Animal Behaviour Science, 2018, 209, 71-77.	1.9	13
22	Umbilical tissue as a sampling technique for DNA testing in neonate dogs. Animal Genetics, 2018, 49, 499-500.	1.7	0
23	A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam. PLoS ONE, 2018, 13, e0198565.	2.5	5
24	Relationship between transitional lumbosacral vertebrae and eight lumbar vertebrae in a breeding colony of Labrador Retrievers and Labrador Crosses. Australian Veterinary Journal, 2017, 95, 33-36.	1.1	5
25	Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Scientific Reports, 2017, 7, 423.	3.3	56
26	Exclusion of known progressive retinal atrophy genes for blindness in the Hungarian Puli. Animal Genetics, 2017, 48, 500-501.	1.7	2
27	Exclusion of known gene loci for cerebellar abiotrophy in the Australian Working Kelpie. Animal Genetics, 2017, 48, 730-732.	1.7	3
28	Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. BMC Genomics, 2017, 18, 565.	2.8	116
29	A Coding Variant in the Gene Bardet-Biedl Syndrome 4 (<i>BBS4</i>) Is Associated with a Novel Form of Canine Progressive Retinal Atrophy. G3: Genes, Genomes, Genetics, 2017, 7, 2327-2335.	1.8	11
30	Inheritance of chronic superficial keratitis in Australian Greyhounds. Animal Genetics, 2016, 47, 629-629.	1.7	4
31	Interval dogs: Results and evaluation of Global Positioning System units in measuring athletic performance in stock-herding dogs. Journal of Veterinary Behavior: Clinical Applications and Research, 2016, 14, 1-4.	1.2	5
32	A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthritis and Cartilage, 2016, 24, 1441-1450.	1.3	32
33	Digging for known genetic mutations underlying inherited bone and cartilage characteristics and disorders in the dog and cat. Veterinary and Comparative Orthopaedics and Traumatology, 2016, 29, 269-276.	0.5	5
34	Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nature Genetics, 2016, 48, 152-158.	21.4	59
35	Progressive retinal atrophy in <scp>S</scp> hetland sheepdog is associated with a mutation in the <i><scp>CNGA</scp>1</i> gene. Animal Genetics, 2015, 46, 515-521.	1.7	22
36	Canine Disorder Mirrors Human Disease: Exonic Deletion in HES7 Causes Autosomal Recessive Spondylocostal Dysostosis in Miniature Schnauzer Dogs. PLoS ONE, 2015, 10, e0117055.	2.5	27

#	Article	IF	CITATIONS
37	Strong selection for behavioural resilience in Australian stock working dogs identified by selective sweep analysis. Canine Genetics and Epidemiology, 2015, 2, 6.	2.8	18
38	Simple, rapid and accurate genotyping-by-sequencing from aligned whole genomes with ArrayMaker. Bioinformatics, 2015, 31, 599-601.	4.1	1
39	Genome-Wide Association Studies in Dogs and Humans Identify ADAMTS20 as a Risk Variant for Cleft Lip and Palate. PLoS Genetics, 2015, 11, e1005059.	3.5	82
40	Environmental Factors Associated with Success Rates of Australian Stock Herding Dogs. PLoS ONE, 2014, 9, e104457.	2.5	30
41	A LINE-1 Insertion in DLX6 Is Responsible for Cleft Palate and Mandibular Abnormalities in a Canine Model of Pierre Robin Sequence. PLoS Genetics, 2014, 10, e1004257.	3.5	49
42	Manual muster: A critical analysis of the use of common terms in Australian working dog manuals. Journal of Veterinary Behavior: Clinical Applications and Research, 2014, 9, 370-374.	1.2	15
43	Holding back the genes: limitations of research into canine behavioural genetics. Canine Genetics and Epidemiology, 2014, 1, 7.	2.8	27
44	From the Phenotype to the Genotype via Bioinformatics. Methods in Molecular Biology, 2014, 1168, 1-16.	0.9	4
45	Analysis of the canine genome and canine health: Bridging a gap. Veterinary Journal, 2013, 196, 1-3.	1.7	1
46	Empirical assessment of competitive hybridization and noise in ultra high density canine tiling arrays. BMC Bioinformatics, 2013, 14, 231.	2.6	0
47	A web resource on DNA tests for canine and feline hereditary diseases. Veterinary Journal, 2013, 197, 182-187.	1.7	21
48	Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data. PLoS ONE, 2013, 8, e54997.	2.5	214
49	Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds. PLoS Genetics, 2013, 9, e1003211.	3.5	240
50	Accumulating Mutations in Series of Haplotypes at the KIT and MITF Loci Are Major Determinants of White Markings in Franches-Montagnes Horses. PLoS ONE, 2013, 8, e75071.	2.5	34
51	Genetic Correlations among Canine Hip Dysplasia Radiographic Traits in a Cohort of Australian German Shepherd Dogs, and Implications for the Design of a More Effective Genetic Control Program. PLoS ONE, 2013, 8, e78929.	2.5	7
52	Estimated Breeding Values for Canine Hip Dysplasia Radiographic Traits in a Cohort of Australian German Shepherd Dogs. PLoS ONE, 2013, 8, e77470.	2.5	17
53	A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genetics, 2012, 8, e1002451.	3.5	208
54	Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genomics, 2012, 13, 365.	2.8	34

#	Article	IF	CITATIONS
55	Heritability and Phenotypic Variation of Canine Hip Dysplasia Radiographic Traits in a Cohort of Australian German Shepherd Dogs. PLoS ONE, 2012, 7, e39620.	2.5	29
56	Empowering international canine inherited disorder management. Mammalian Genome, 2012, 23, 195-202.	2.2	10
57	Symmetry of hip dysplasia traits in the German Shepherd Dog in Australia. Journal of Animal Breeding and Genetics, 2011, 128, 230-243.	2.0	10
58	Canine genetics: A very Special Issue. Veterinary Journal, 2011, 189, 123-125.	1.7	6
59	Inbreeding and genetic diversity in dogs: Results from DNA analysis. Veterinary Journal, 2011, 189, 183-188.	1.7	32
60	A genealogical survey of Australian registered dog breeds. Veterinary Journal, 2011, 189, 203-210.	1.7	41
61	A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiology of Disease, 2011, 42, 468-474.	4.4	109
62	Association analysis of candidate SNPs in <i>TRPM1</i> with leopard complex spotting (<i>LP</i>) and congenital stationary night blindness (CSNB) in horses. Animal Genetics, 2010, 41, 207-207.	1.7	12
63	Fine-mapping and mutation analysis of TRPM1: a candidate gene for leopard complex (LP) spotting and congenital stationary night blindness in horses. Briefings in Functional Genomics, 2010, 9, 193-207.	2.7	49
64	Fine Mapping in 94 Inbred Mouse Strains Using a High-Density Haplotype Resource. Genetics, 2010, 185, 1081-1095.	2.9	95
65	Genome-wide association analysis reveals a <i>SOD1</i> mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2794-2799.	7.1	219
66	Identification of Novel Genes That Mediate Innate Immunity Using Inbred Mice. Genetics, 2009, 183, 1535-1544.	2.9	55
67	Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse. Science, 2009, 326, 865-867.	12.6	680
68	Evaluation of the Serotonergic Genes htr1A, htr1B, htr2A, and slc6A4 in Aggressive Behavior of Golden Retriever Dogs. Behavior Genetics, 2008, 38, 55-66.	2.1	31
69	A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 2008, 40, 1004-1009.	21.4	271
70	Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics, 2008, 91, 458-466.	2.9	156
71	Efficient Control of Population Structure in Model Organism Association Mapping. Genetics, 2008, 178, 1709-1723.	2.9	1,752
72	A deletion in nephronophthisis 4 (<i>NPHP4</i>) is associated with recessive cone-rod dystrophy in standard wire-haired dachshund. Genome Research, 2008, 18, 1415-1421.	5.5	75

#	ARTICLE	IF	CITATIONS
73	Inheritance, Mode of Inheritance, and Candidate Genes for Primary Hyperparathyroidism in Keeshonden. Journal of Veterinary Internal Medicine, 2007, 21, 199-203.	1.6	27
74	Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics, 2007, 39, 1321-1328.	21.4	474
75	Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nature Genetics, 2007, 39, 1318-1320.	21.4	176
76	Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature, 2007, 447, 167-177.	27.8	661
77	A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature, 2007, 448, 1050-1053.	27.8	406
78	Inheritance, Mode of Inheritance, and Candidate Genes for Primary Hyperparathyroidism in Keeshonden. Journal of Veterinary Internal Medicine, 2007, 21, 199.	1.6	3
79	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	27.8	1,113
80	Genetic variation in laboratory mice. Nature Genetics, 2005, 37, 1175-1180.	21.4	143
81	Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, 438, 803-819.	27.8	2,215
82	Segmental Phylogenetic Relationships of Inbred Mouse Strains Revealed by Fine-Scale Analysis of Sequence Variation Across 4.6 Mb of Mouse Genome. Genome Research, 2004, 14, 1493-1500.	5.5	78
83	The mosaic structure of variation in the laboratory mouse genome. Nature, 2002, 420, 574-578.	27.8	448
84	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	27.8	6,319