
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8814613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dystrophic epidermolysis bullosa pruriginosa: a new case series of a rare phenotype unveils skewed Th2 immunity. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 133-143.	1.3	17
2	Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. Journal of Allergy and Clinical Immunology, 2022, 149, 1358-1372.	1.5	26
3	Drug Repurposing Reveals mTOR Inhibition as a Promising Strategy for Epidermolysis Bullosa Simplex. Journal of Investigative Dermatology, 2022, 142, 275-278.	0.3	0
4	Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science, 2022, 376, eabm6380.	6.0	25
5	Phage Display Selected Cyclic Peptide Inhibitors of Kallikrein-Related Peptidases 5 and 7 and Their <i>In Vivo</i> Delivery to the Skin. Journal of Medicinal Chemistry, 2022, 65, 9735-9749.	2.9	1
6	The challenging management of a series of 43 infants with Netherton syndrome: unexpected complications and novel mutations*. British Journal of Dermatology, 2021, 184, 532-537.	1.4	13
7	Duality of Netherton syndrome manifestations and response to ixekizumab. Journal of the American Academy of Dermatology, 2021, 84, 1476-1480.	0.6	20
8	The Whey Acidic Protein WFDC12 Is Specifically Expressed in Terminally Differentiated Keratinocytes and Regulates Epidermal Serine Protease Activity. Journal of Investigative Dermatology, 2021, 141, 1198-1206.e13.	0.3	12
9	Humans with inherited TÂcell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell, 2021, 184, 3812-3828.e30.	13.5	53
10	A Potent and Selective Kallikrein-5 Inhibitor Delivers High Pharmacological Activity in Skin from Patients with Netherton Syndrome. Journal of Investigative Dermatology, 2021, 141, 2272-2279.	0.3	16
11	Clinical trial of ABCB5+ mesenchymal stem cells for recessive dystrophic epidermolysis bullosa. JCI Insight, 2021, 6, .	2.3	15
12	A TP63 Mutation Causes Prominent Alopecia with Mild Ectodermal Dysplasia. Journal of Investigative Dermatology, 2020, 140, 1103-1106.e4.	0.3	2
13	A previously unreported frameshift <i><scp>ATP</scp>2C1</i> mutation in a generalized Hailey–Hailey disease. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e118-e120.	1.3	4
14	EBGene trial: patient preselection outcomes for the European GENEGRAFT <i>exÂvivo</i> phase I/II gene therapy trial for recessive dystrophic epidermolysis bullosa. British Journal of Dermatology, 2020, 182, 794-797.	1.4	19
15	Targeted Inhibition of the Epidermal Growth Factor Receptor and Mammalian Target of Rapamycin Signaling Pathways in Olmsted Syndrome. JAMA Dermatology, 2020, 156, 196.	2.0	21
16	Glucosylated cholesterol in skin: Synthetic role of extracellular glucocerebrosidase. Clinica Chimica Acta, 2020, 510, 707-710.	0.5	4
17	Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. British Journal of Dermatology, 2020, 183, 614-627.	1.4	406
18	Multidisciplinary care of epidermolysis bullosa during the COVID-19 pandemic—Consensus: Recommendations by an international panel of experts. Journal of the American Academy of Dermatology, 2020, 83, 1222-1224.	0.6	7

#	Article	IF	CITATIONS
19	Emerging drugs for the treatment of epidermolysis bullosa. Expert Opinion on Emerging Drugs, 2020, 25, 467-489.	1.0	9
20	SPCA1 governs the stability of TMEM165 in Hailey-Hailey disease. Biochimie, 2020, 174, 159-170.	1.3	6
21	Secukinumab Therapy for Netherton Syndrome. JAMA Dermatology, 2020, 156, 907.	2.0	58
22	Transgenic Kallikrein 14 Mice Display Major Hair Shaft Defects Associated with Desmoglein 3 and 4 Degradation, Abnormal Epidermal Differentiation, and IL-36 Signature. Journal of Investigative Dermatology, 2020, 140, 1184-1194.	0.3	14
23	Interplay of Staphylococcal and Host Proteases Promotes Skin Barrier Disruption in Netherton Syndrome. Cell Reports, 2020, 30, 2923-2933.e7.	2.9	56
24	Low Prevalence of GSC Gene Mutations in a Large Cohort of Predominantly Caucasian Patients with Hidradenitis Suppurativa. Journal of Investigative Dermatology, 2020, 140, 2085-2088.e14.	0.3	47
25	Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. Journal of Lipid Research, 2020, 61, 859-869.	2.0	18
26	Efficacy of Dupilumab for Controlling Severe Atopic Dermatitis in a Patient with Hyper-IgE Syndrome. Journal of Clinical Immunology, 2020, 40, 418-420.	2.0	28
27	The Surface Microbiome of Clinically Unaffected Skinfolds in Hidradenitis Suppurativa: A Cross-Sectional Culture-Based and 16S rRNA Gene Amplicon Sequencing Study in 60 Patients. Journal of Investigative Dermatology, 2020, 140, 1847-1855.e6.	0.3	38
28	Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opinion on Orphan Drugs, 2020, 8, 455-487.	0.5	23
29	Dysregulation of tryptophan catabolism at the host-skin microbiota interface in hidradenitis suppurativa. JCI Insight, 2020, 5, .	2.3	31
30	Design and development of a series of borocycles as selective, covalent kallikrein 5 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126675.	1.0	6
31	Kallikrein 5 inhibitors identified through structure based drug design in search for a treatment for Netherton Syndrome. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 821-825.	1.0	9
32	Remission of chronic acne fulminans and severe hidradenitis suppurativa with targeted antibiotherapy. JAAD Case Reports, 2019, 5, 525-528.	0.4	12
33	Structure guided drug design to develop kallikrein 5 inhibitors to treat Netherton syndrome. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1454-1458.	1.0	9
34	Bone marrow transplant with postâ€ŧransplant cyclophosphamide for recessive dystrophic epidermolysis bullosa expands the related donor pool and permits tolerance of nonhaematopoietic cellular grafts. British Journal of Dermatology, 2019, 181, 1238-1246.	1.4	26
35	Identification of Rigosertib for the Treatment of Recessive Dystrophic Epidermolysis Bullosa–Associated Squamous Cell Carcinoma. Clinical Cancer Research, 2019, 25, 3384-3391.	3.2	24
36	Evaluation of a crystallographic surrogate for kallikrein 5 in the discovery of novel inhibitors for Netherton syndrome. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 385-391.	0.4	2

#	Article	IF	CITATIONS
37	Mutations in PERP Cause Dominant and Recessive Keratoderma. Journal of Investigative Dermatology, 2019, 139, 380-390.	0.3	17
38	Epidermolysis Bullosa Simplex with KLHL24 Mutations Is Associated with Dilated Cardiomyopathy. Journal of Investigative Dermatology, 2019, 139, 244-249.	0.3	23
39	Epidermolysis bullosa simplex–generalized severe type due to keratin 5 p.Clu477Lys mutation: Genotypeâ€phenotype correlation and in silico modeling analysis. Pediatric Dermatology, 2019, 36, 132-138.	0.5	12
40	Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight, 2019, 4, .	2.3	56
41	Diacerein orphan drug development for epidermolysis bullosa simplex: A phase 2/3 randomized, placebo-controlled, double-blind clinical trial. Journal of the American Academy of Dermatology, 2018, 78, 892-901.e7.	0.6	48
42	<scp>PASH</scp> syndrome (pyoderma gangrenosum, acne and hidradenitis suppurativa): a disease with genetic heterogeneity. British Journal of Dermatology, 2018, 178, e17-e18.	1.4	25
43	Antisense-Mediated Splice Modulation to Reframe Transcripts. Methods in Molecular Biology, 2018, 1828, 531-552.	0.4	Ο
44	Intradermal Injection of Bone Marrow Mesenchymal Stromal Cells Corrects Recessive Dystrophic Epidermolysis BullosaÂinÂa Xenograft Model. Journal of Investigative Dermatology, 2018, 138, 2483-2486.	0.3	14
45	ExÂVivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair. Molecular Therapy - Nucleic Acids, 2018, 12, 554-567.	2.3	53
46	APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2018, 10, .	5.8	91
47	A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Science Immunology, 2018, 3, .	5.6	132
48	TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. Journal of Experimental Medicine, 2017, 214, 1529-1546.	4.2	109
49	The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. Journal of Investigative Dermatology, 2017, 137, e123-e129.	0.3	6
50	Epidermolytic Ichthyosis Sine Epidermolysis. American Journal of Dermatopathology, 2017, 39, 440-444.	0.3	11
51	The Microbiological Landscape of Anaerobic Infections in Hidradenitis Suppurativa: A Prospective Metagenomic Study. Clinical Infectious Diseases, 2017, 65, 282-291.	2.9	101
52	Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host and Microbe, 2017, 22, 460-470.e5.	5.1	52
53	Selective Substrates and Inhibitors for Kallikrein-Related Peptidase 7 (KLK7) Shed Light on KLK Proteolytic Activity in the Stratum Corneum. Journal of Investigative Dermatology, 2017, 137, 430-439.	0.3	50
54	Skin Biopsy in Netherton Syndrome. American Journal of Dermatopathology, 2016, 38, 83-91.	0.3	26

#	Article	IF	CITATIONS
55	Marked intrafamilial phenotypic heterogeneity in dystrophic epidermolysis bullosa caused by inheritance of a mild dominant glycine substitution and a novel deep intronic recessive <i>COL7A1</i> mutation. British Journal of Dermatology, 2016, 174, 1122-1125.	1.4	11
56	Gene-Corrected Fibroblast Therapy for Recessive Dystrophic Epidermolysis Bullosa using a Self-Inactivating COL7A1 RetroviralÂVector. Journal of Investigative Dermatology, 2016, 136, 1346-1354.	0.3	44
57	Meganuclease-Mediated COL7A1 Gene Correction for Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2016, 136, 872-875.	0.3	30
58	Mechanistic insight from murine models of Netherton syndrome. Biological Chemistry, 2016, 397, 1223-1228.	1.2	3
59	Targeted Exon Skipping Restores Type VII Collagen Expression and Anchoring Fibril Formation in an InÂVivo RDEB Model. Journal of Investigative Dermatology, 2016, 136, 2387-2395.	0.3	56
60	Dual T cell– and B cell–intrinsic deficiency in humans with biallelic <i>RLTPR</i> mutations. Journal of Experimental Medicine, 2016, 213, 2413-2435.	4.2	117
61	Genetic basis of dominant dystrophic epidermolysis bullosa in tunisian families and coâ€occurrence of dominant and recessive mutations. Journal of the European Academy of Dermatology and Venereology, 2016, 30, 155-157.	1.3	2
62	Intrafamily and Interfamilial Phenotype Variation and Immature Immunity in Patients With Netherton Syndrome and Finnish <i>SPINK5</i> Founder Mutation. JAMA Dermatology, 2016, 152, 435.	2.0	36
63	Comparison of 3 type VII collagen (C7) assays for serologic diagnosis of epidermolysis bullosa acquisita (EBA). Journal of the American Academy of Dermatology, 2016, 74, 1166-1172.	0.6	29
64	Efficacy of ertapenem in severe hidradenitis suppurativa: a pilot study in a cohort of 30 consecutive patients. Journal of Antimicrobial Chemotherapy, 2016, 71, 513-520.	1.3	73
65	Deciphering the microbiology of hidradenitis suppurativa: a step forward towards understanding an enigmatic inflammatory skin disease. Experimental Dermatology, 2015, 24, 736-737.	1.4	7
66	KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome. PLoS Genetics, 2015, 11, e1005389.	1.5	73
67	First nicastrin mutation in <scp>PASH</scp> (pyoderma gangrenosum, acne and suppurative) Tj ETQq1 1 0.784	314 rgBT 1.4	Overlock 10
68	Erythrokeratodermia Variabilis et Progressiva Allelic to Oculo-Dento-Digital Dysplasia. Journal of Investigative Dermatology, 2015, 135, 1475-1478.	0.3	10
69	Olmsted syndrome: clinical, molecular and therapeutic aspects. Orphanet Journal of Rare Diseases, 2015, 10, 33.	1.2	71
70	Remission of refractory pyoderma gangrenosum, severe acne, and hidradenitis suppurativa (PASH) syndrome using targeted antibiotic therapy in 4 patients. Journal of the American Academy of Dermatology, 2015, 73, S66-S69.	0.6	30
71	Toward the First Class of Suicide Inhibitors of Kallikreins Involved in Skin Diseases. Journal of Medicinal Chemistry, 2015, 58, 598-612.	2.9	47
72	Prenatal Diagnosis of Epidermolysis Bullosa: Current Aspects and Perspectives. , 2015, , 239-248.		1

#	Article	IF	CITATIONS
73	Mucocutaneous Engraftment and Type VII Collagen (C7) Replacement after Allogeneic Hematopoietic Cell Transplantation (HCT) in Patients with Recessive Dystrophic Epidermolysis Bullosa (RDEB). Blood, 2015, 126, 402-402.	0.6	1
74	Bacterial Pathogens Associated with Hidradenitis Suppurativa, France. Emerging Infectious Diseases, 2014, 20, 1990-1998.	2.0	117
75	Bathing suit ichthyosis caused by a <i>TGM1</i> mutation in a Tunisian child. International Journal of Dermatology, 2014, 53, 1478-1480.	0.5	10
76	Intercellular Skin Barrier Lipid Composition and Organization in Netherton Syndrome Patients. Journal of Investigative Dermatology, 2014, 134, 1238-1245.	0.3	74
77	Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. Journal of Experimental Medicine, 2014, 211, 499-513.	4.2	93
78	HEK293-Based Production Platform for γ-Retroviral (Self-Inactivating) Vectors: Application for Safe and Efficient Transfer of <i>COL7A1</i> cDNA. Human Gene Therapy Clinical Development, 2014, 25, 218-228.	3.2	18
79	Inflammatory peeling skin syndrome caused by homozygous genomic deletion in thePSORS1region encompassing theCDSNgene. Experimental Dermatology, 2014, 23, 60-63.	1.4	18
80	Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biological Chemistry, 2014, 395, 945-958.	1.2	53
81	Genetics of Atopic Dermatitis. JAMA Dermatology, 2014, 150, 248.	2.0	2
82	A New <i>TRPV3</i> Missense Mutation in a Patient With Olmsted Syndrome and Erythromelalgia. JAMA Dermatology, 2014, 150, 303.	2.0	51
83	Familial pachyonychia congenita with steatocystoma multiplex and multiple abscesses of the scalp due to the p.Asn92Ser mutation in keratin 17. British Journal of Dermatology, 2014, 171, 1565-1567.	1.4	11
84	Proteases and proteomics: Cutting to the core of human skin pathologies. Proteomics - Clinical Applications, 2014, 8, 389-402.	0.8	29
85	Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification. Journal of the American Academy of Dermatology, 2014, 70, 1103-1126.	0.6	747
86	Mutational founder effect in recessive dystrophic epidermolysis bullosa families from Southern Tunisia. Archives of Dermatological Research, 2014, 306, 405-411.	1.1	5
87	SERCA2 Dysfunction in Darier Disease Causes Endoplasmic Reticulum Stress and Impaired Cell-to-Cell Adhesion Strength: Rescue by Miglustat. Journal of Investigative Dermatology, 2014, 134, 1961-1970.	0.3	56
88	Olmsted syndrome with erythromelalgia caused by recessive transient receptor potential vanilloid 3 mutations. British Journal of Dermatology, 2014, 171, 675-678.	1.4	29
89	HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics Journal, 2014, 14, 281-288.	0.9	199
90	IgE allergen component-based profiling and atopic manifestations in patients with Netherton syndrome. Journal of Allergy and Clinical Immunology, 2014, 134, 985-988.	1.5	39

#	Article	IF	CITATIONS
91	Proteases: common culprits in human skin disorders. Trends in Molecular Medicine, 2014, 20, 166-178.	3.5	87
92	Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. Journal of Cell Biology, 2014, 204, 2045OIA32.	2.3	0
93	1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4547-4551.	1.0	29
94	Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell and Tissue Research, 2013, 351, 289-300.	1.5	177
95	Identification by in silico and inÂvitro screenings of small organic molecules acting as reversible inhibitors of kallikreins. European Journal of Medicinal Chemistry, 2013, 70, 661-668.	2.6	19
96	Systemic Protein Therapy for Recessive Dystrophic Epidermolysis Bullosa: How Far Are We from Clinical Translation?. Journal of Investigative Dermatology, 2013, 133, 1719-1721.	0.3	14
97	Nicastrin Mutations in French Families with Hidradenitis Suppurativa. Journal of Investigative Dermatology, 2012, 132, 1728-1730.	0.3	58
98	Netherton syndrome: new advances in the clinic, disease mechanism and treatment. Expert Review of Dermatology, 2012, 7, 81-92.	0.3	11
99	Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome: Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations. Journal of Investigative Dermatology, 2012, 132, 575-582.	0.3	33
100	The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Human Molecular Genetics, 2012, 21, 4187-4200.	1.4	84
101	Lekti Immunochemistry for the Diagnosis of Netherton Syndrome. American Journal of Dermatopathology, 2012, 34, 853.	0.3	5
102	siRNA-Mediated Allele-Specific Inhibition of Mutant Type VII Collagen in Dominant Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2012, 132, 1741-1743.	0.3	30
103	Antisense-Mediated Exon Skipping to Reframe Transcripts. Methods in Molecular Biology, 2012, 867, 221-238.	0.4	27
104	Threeâ€dimensional ultrasound prenatal diagnosis of congenital ichthyosis: contribution of molecular biology. Prenatal Diagnosis, 2012, 32, 498-500.	1.1	9
105	Genitoperineal papular acantholytic dyskeratosis is allelic to Hailey-Hailey disease. British Journal of Dermatology, 2012, 167, 210-212.	1.4	42
106	Darier disease : A disease model of impaired calcium homeostasis in the skin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1111-1117.	1.9	69
107	Genome-wide association study of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Europe. Orphanet Journal of Rare Diseases, 2011, 6, 52.	1.2	99
108	When Activity Requires Breaking Up: LEKTI Proteolytic Activation Cascade for Specific Proteinase Inhibition. Journal of Investigative Dermatology, 2011, 131, 2169-2173.	0.3	22

#	Article	IF	CITATIONS
109	Induced Pluripotent Stem Cells from Individuals with Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2011, 131, 848-856.	0.3	139
110	A New Case of Keratin 14 Functional Knockout Causes Severe Recessive EBS and Questions the Haploinsufficiency Model of Naegeli–Franceschetti–Jadassohn Syndrome. Journal of Investigative Dermatology, 2011, 131, 2131-2133.	0.3	8
111	â€~Matchstick' eyebrow hairs: a dermoscopic clue to the diagnosis of Netherton syndrome. Journal of the European Academy of Dermatology and Venereology, 2010, 24, 740-741.	1.3	24
112	Modifier genes in pseudoxanthoma elasticum: novel insights from the Ggcx mouse model. Journal of Molecular Medicine, 2010, 88, 149-153.	1.7	6
113	Missense mutations of conserved glycine residues in fibrillin-1 highlight a potential subtype of cb-EGF-like domains. Human Mutation, 2010, 31, E1021-E1042.	1.1	9
114	Early skin biopsy is helpful for the diagnosis and management of neonatal and infantile erythrodermas. Journal of Cutaneous Pathology, 2010, 37, 249-255.	0.7	44
115	Immune reactivity to type VII collagen: implications for gene therapy of recessive dystrophic epidermolysis bullosa. Gene Therapy, 2010, 17, 930-937.	2.3	34
116	Transcription factor E4F1 is essential for epidermal stem cell maintenance and skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21076-21081.	3.3	36
117	Par2 Inactivation Inhibits Early Production of TSLP, but Not Cutaneous Inflammation, in Netherton Syndrome Adult Mouse Model. Journal of Investigative Dermatology, 2010, 130, 2736-2742.	0.3	97
118	SIN Retroviral Vectors Expressing COL7A1 Under Human Promoters for Ex Vivo Gene Therapy of Recessive Dystrophic Epidermolysis Bullosa. Molecular Therapy, 2010, 18, 1509-1518.	3.7	94
119	Revised nomenclature and classification of inherited ichthyoses: Results of the First Ichthyosis Consensus Conference in Sorèze 2009. Journal of the American Academy of Dermatology, 2010, 63, 607-641.	0.6	610
120	Gene Therapy for Recessive Dystrophic Epidermolysis Bullosa. Dermatologic Clinics, 2010, 28, 361-366.	1.0	11
121	Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. Journal of Clinical Investigation, 2010, 120, 871-882.	3.9	114
122	Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. Journal of Experimental Medicine, 2009, 206, 1135-1147.	4.2	453
123	Acral self-healing collodion baby: report of a new clinical phenotype caused by a novelTGM1mutation. British Journal of Dermatology, 2009, 161, 456-463.	1.4	37
124	Keratitis-Ichthyosis-Deafness Syndrome Caused by GJB2 Maternal Mosaicism. Journal of Investigative Dermatology, 2009, 129, 776-779.	0.3	25
125	Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nature Genetics, 2009, 41, 228-233.	9.4	190
126	A frequent functional SNP in the <i>MMP1</i> promoter is associated with higher disease severity in recessive dystrophic epidermolysis bullosa. Human Mutation, 2008, 29, 267-276.	1.1	93

#	Article	IF	CITATIONS
127	No association between HLA-B and cutaneous reactions to sulphonamides in human immunodeficiency virus-infected patients. British Journal of Dermatology, 2008, 159, 501-503.	1.4	4
128	The classification of inherited epidermolysis bullosa (EB): Report of the Third International Consensus Meeting on Diagnosis and Classification of EB. Journal of the American Academy of Dermatology, 2008, 58, 931-950.	0.6	812
129	A European study of HLA-B in Stevens–Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenetics and Genomics, 2008, 18, 99-107.	0.7	528
130	HLA-DRB1 * 01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. Aids, 2008, 22, 540-541.	1.0	109
131	LEKTI Fragments Specifically Inhibit KLK5, KLK7, and KLK14 and Control Desquamation through a pH-dependent Interaction. Molecular Biology of the Cell, 2007, 18, 3607-3619.	0.9	281
132	TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 2007, 317, 1522-1527.	6.0	970
133	Érythrodermies néonatales et infantiles : apport de la biopsie cutanée précoce dans les formes graves. Annales De Dermatologie Et De Venereologie, 2007, 134, 613.	0.5	0
134	Contribution ofABCC6 genomic rearrangements to the diagnosis of pseudoxanthoma elasticum in French patients. Human Mutation, 2007, 28, 1046-1046.	1.1	22
135	Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nature Medicine, 2007, 13, 975-980.	15.2	708
136	DNA-Based Prenatal Diagnosis of Harlequin Ichthyosis and Characterization of ABCA12 Mutation Consequences. Journal of Investigative Dermatology, 2007, 127, 568-573.	0.3	60
137	Keratitis?ichthyosis?deafness syndrome: disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. British Journal of Dermatology, 2007, 156, 1015-1019.	1.4	119
138	Serca pumps and human diseases. , 2007, 45, 337-363.		99
139	Gene therapeutic strategies for blistering skin diseases. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 87-92.	0.5	0
140	Activity of the hSPCA1 Golgi Ca2+ pump is essential for Ca2+-mediated Ca2+ response and cell viability in Darier disease. Journal of Cell Science, 2006, 119, 671-679.	1.2	60
141	SPINK5, the Defective Gene in Netherton Syndrome, Encodes Multiple LEKTI Isoforms Derived from Alternative Pre-mRNA Processing. Journal of Investigative Dermatology, 2006, 126, 315-324.	0.3	29
142	Three Severe Cases of EBS Dowling-Meara Caused by Missense and Frameshift Mutations in the Keratin 14 Gene. Journal of Investigative Dermatology, 2006, 126, 773-776.	0.3	9
143	Corneodesmosomal Cadherins Are Preferential Targets of Stratum Corneum Trypsin- and Chymotrypsin-like Hyperactivity in Netherton Syndrome. Journal of Investigative Dermatology, 2006, 126, 1622-1632.	0.3	170
144	Generalized Epidermolytic Hyperkeratosis in Two Unrelated Children from Parents with Localized Linear Form, and Prenatal Diagnosis. Journal of Investigative Dermatology, 2006, 126, 2715-2717.	0.3	24

#	Article	IF	CITATIONS
145	A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics Journal, 2006, 6, 265-268.	0.9	367
146	Recessive dystrophic epidermolysis bullosa caused by COL7A1 hemizygosity and a missense mutation with complex effects on splicing. Human Mutation, 2006, 27, 291-292.	1.1	16
147	Heterozygous disruption of SERCA2a is not associated with impairment of cardiac performance in humans: implications for SERCA2a as a therapeutic target in heart failure. Heart, 2006, 92, 105-109.	1.2	39
148	Kallikreinâ€mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB Journal, 2006, 20, 2068-2080.	0.2	397
149	Up-Regulation of Transient Receptor Potential Canonical 1 (TRPC1) following Sarco(endo)plasmic Reticulum Ca2+ ATPase 2 Gene Silencing Promotes Cell Survival: A Potential Role for TRPC1 in Darier's Disease. Molecular Biology of the Cell, 2006, 17, 4446-4458.	0.9	75
150	Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype. Human Molecular Genetics, 2006, 15, 3083-3097.	1.4	76
151	Topical Recombinant Alpha1-Antitrypsin: A Potential Treatment for Netherton Syndrome?. Archives of Dermatology, 2006, 142, 396-8.	1.7	28
152	Stable Integration of Large PAC Constructs in Keratinocytes. , 2005, 289, 315-328.		0
153	Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nature Genetics, 2005, 37, 56-65.	9.4	341
154	LEKTI Is Localized in Lamellar Granules, Separated from KLK5 and KLK7, and Is Secreted in the Extracellular Spaces of the Superficial Stratum Granulosum. Journal of Investigative Dermatology, 2005, 124, 360-366.	0.3	137
155	Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. Journal of Medical Genetics, 2005, 42, 881-892.	1.5	259
156	Identification of a new locus for isolated familial keratoconus at 2p24. Journal of Medical Genetics, 2005, 42, 88-94.	1.5	86
157	Traitement de remplacement par alpha-1 antitrypsine dans le syndrome de Netherton. Annales De Dermatologie Et De Venereologie, 2005, 132, 601.	0.5	Ο
158	Characterization and expression analysis of the Spink5 gene, the mouse ortholog of the defective gene in Netherton syndrome. Genomics, 2005, 85, 483-492.	1.3	9
159	Harlequin ichthyosis unmasked: a defect of lipid transport. Journal of Clinical Investigation, 2005, 115, 1708-1710.	3.9	57
160	Calcium pumps and keratinocytes: lessons from Darier's disease and Hailey-Hailey disease. British Journal of Dermatology, 2004, 150, 821-828.	1.4	114
161	Novel ABCC6 Mutations in Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2004, 122, 608-613.	0.3	75
162	Hailey–Hailey Disease: Identification of Novel Mutations in ATP2C1 and Effect of Missense Mutation A528P on Protein Expression Levels. Journal of Investigative Dermatology, 2004, 123, 67-71.	0.3	41

#	Article	IF	CITATIONS
163	Calcium pump disorders of the skin. American Journal of Medical Genetics Part A, 2004, 131C, 20-31.	2.4	68
164	Darier's disease: from dyskeratosis to endoplasmic reticulum calcium ATPase deficiency. Biochemical and Biophysical Research Communications, 2004, 322, 1237-1244.	1.0	36
165	Mutations in the Sarcoplasmic/Endoplasmic Reticulum Ca2+ ATPase Isoform Cause Darier's Disease. Journal of Investigative Dermatology, 2003, 121, 486-489.	0.3	50
166	Impaired Trafficking of the Desmoplakins in Cultured Darier's Disease Keratinocytes. Journal of Investigative Dermatology, 2003, 121, 1349-1355.	0.3	55
167	Acrokeratosis Verruciformis of Hopf is Caused by Mutation in ATP2A2: Evidence That it is Allelic to Darier's Disease. Journal of Investigative Dermatology, 2003, 120, 229-232.	0.3	87
168	Dissection of the Functional Differences between Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA) 1 and 2 Isoforms and Characterization of Darier Disease (SERCA2) Mutants by Steady-state and Transient Kinetic Analyses. Journal of Biological Chemistry, 2003, 278, 47877-47889.	1.6	123
169	LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Human Molecular Genetics, 2003, 12, 2417-2430.	1.4	179
170	Effect of Hailey-Hailey Disease Mutations on the Function of a New Variant of Human Secretory Pathway Ca2+/Mn2+-ATPase (hSPCA1). Journal of Biological Chemistry, 2003, 278, 24721-24730.	1.6	90
171	A Microinjected COL7A1-PAC Vector Restores Synthesis of Intact Procollagen VII in a Dystrophic Epidermolysis Bullosa Keratinocyte Cell Line. Human Gene Therapy, 2002, 13, 1655-1662.	1.4	55
172	Hailey-Hailey Disease: Molecular and Clinical Characterization of Novel Mutations in the ATP2C1 Gene. Journal of Investigative Dermatology, 2002, 118, 338-343.	0.3	81
173	Netherton Syndrome: Disease Expression and Spectrum of SPINK5 Mutations in 21 Families. Journal of Investigative Dermatology, 2002, 118, 352-361.	0.3	177
174	Expression of sarco/endo-plasmic reticulum Ca2+-ATPase type 2 isoforms (SERCA2) in normal human skin and mucosa, and Darier's disease skin. British Journal of Dermatology, 2002, 147, 670-674.	1.4	19
175	Prenatal diagnosis of a lethal form of Netherton syndrome bySPINK5 mutation analysis. Prenatal Diagnosis, 2002, 22, 121-126.	1.1	34
176	The Spectrum of Pathogenic Mutations in SPINK5 in 19 Families with Netherton Syndrome: Implications for Mutation Detection and First Case of Prenatal Diagnosis. Journal of Investigative Dermatology, 2001, 117, 179-187.	0.3	145
177	Gene polymorphism in Netherton and common atopic disease. Nature Genetics, 2001, 29, 175-178.	9.4	376
178	Role of Sp1 Response Element in Transcription of the Human Transglutaminase 1 Gene. Journal of Investigative Dermatology, 2000, 115, 113-117.	0.3	15
179	Mosaicism for ATP2A2 Mutations Causes Segmental Darier's Disease. Journal of Investigative Dermatology, 2000, 115, 1144-1147.	0.3	138
180	Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genetics, 2000, 25, 141-142.	9.4	817

#	Article	IF	CITATIONS
181	Linkage of Marie-Unna hypotrichosis locus to chromosome 8p21 and exclusion of 10 genes including the hairless gene by mutation analysis. European Journal of Human Genetics, 2000, 8, 273-279.	1.4	30
182	Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, presence of a founder effect in the French Canadian population and fine genetic mapping. European Journal of Human Genetics, 2000, 8, 372-380.	1.4	43
183	Stable integration of large (>100 kb) PAC constructs in HaCaT keratinocytes using an integrin-targeting peptide delivery system. Gene Therapy, 2000, 7, 1600-1605.	2.3	34
184	Grover's disease, despite histological similarity to Darier's disease, does not share an abnormality in the ATP2A2 gene. British Journal of Dermatology, 2000, 143, 658-658.	1.4	33
185	Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Human Molecular Genetics, 2000, 9, 1131-1140.	1.4	264
186	Characterization of the Gene Encoding the 100-kDa Form of Human 2′,5′Oligoadenylate Synthetase. Genomics, 2000, 70, 232-240.	1.3	29
187	Localization of the Netherton Syndrome Gene to Chromosome 5q32, by Linkage Analysis and Homozygosity Mapping. American Journal of Human Genetics, 2000, 66, 914-921.	2.6	128
188	Grover's disease, despite histological similarity to Darier's disease, does not share an abnormality in the ATP2A2 gene. British Journal of Dermatology, 2000, 143, 658-658.	1.4	1
189	Spectrum of novel ATP2A2 mutations in patients with Darier's disease. Human Molecular Genetics, 1999, 8, 1611-1619.	1.4	160
190	The 100-kDa 2′,5′-Oligoadenylate Synthetase Catalyzing Preferentially the Synthesis of Dimeric pppA2′p5 Molecules Is Composed of Three Homologous Domains. Journal of Biological Chemistry, 1999, 274, 1557-1565.	5′A 1.6	66
191	Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nature Genetics, 1999, 21, 271-277.	9.4	697
192	Donor splice site mutation in keratin 5 causes in-frame removal of 22 amino acids of H1 and 1A rod domains in Dowling-Meara epidermolysis bullosa simplex. European Journal of Human Genetics, 1999, 7, 293-300.	1.4	23
193	A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Human Molecular Genetics, 1999, 8, 1237-1243.	1.4	290
194	The Human 2′,5′-Oligoadenylate Synthetase-like Gene (OASL) Encoding the Interferon-Induced 56-kDa Protein Maps to Chromosome 12q24.2 in the Proximity of the 2′,5′-OAS Locus. Genomics, 1999, 56, 362-36	3. ³ .	23
195	Confirmation of Linkage of Clouston Syndrome (Hidrotic Ectodermal Dysplasia) to 13q11-q12.1 with Evidence for Multiple Independent Mutations. Journal of Investigative Dermatology, 1998, 111, 83-85.	0.3	29
196	Refined Genetic Mapping of the Darier Locus to a <1-cM Region of Chromosome 12q24.1, and Construction of a Complete, High-Resolution P1 Artificial Chromosome/Bacterial Artificial Chromosome Contig of the Critical Region. American Journal of Human Genetics, 1998, 62, 890-903.	2.6	20
197	Deletions within COL7A1 Exons Distant from Consensus Splice Sites Alter Splicing and Produce Shortened Polypeptides in Dominant Dystrophic Epidermolysis Bullosa. American Journal of Human Genetics, 1998, 63, 737-748.	2.6	42
198	The Human 2′,5′-Oligoadenylate Synthetase Locus Is Composed of Three Distinct Genes Clustered on Chromosome 12q24.2 Encoding the 100-, 69-, and 40-kDa Forms. Genomics, 1998, 52, 267-277.	1.3	75

#	Article	IF	CITATIONS
199	A Sequence-Ready Physical Map of a Region of 12q24.1. Genomics, 1997, 45, 271-278.	1.3	10
200	Characterization of 18 New Mutations in COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Provides Evidence for Distinct Molecular Mechanisms Underlying Defective Anchoring Fibril Formation. American Journal of Human Genetics, 1997, 61, 599-610.	2.6	148
201	Three Novel Point Mutations in the Keratinocyte Transglutaminase (TGK) Gene in Lamellar Ichthyosis: Significance for Mutant Transcript Level, TGK Immunodetection and Activity. European Journal of Human Genetics, 1997, 5, 218-228.	1.4	29
202	Three novel point mutations in the keratinocyte transglutaminase (TGK) gene in lamellar ichthyosis: significance for mutant transcript level, TGK immunodetection and activity. European Journal of Human Genetics, 1997, 5, 218-28.	1.4	10
203	A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome. Nature Genetics, 1996, 13, 70-77.	9.4	236
204	Pachydermodactyly and Atrophia maculosa varioliformis cutis. Dermatology, 1995, 190, 56-58.	0.9	28
205	DNA-Based Prenatal Diagnosis of Generalized Recessive Dystrophic Epidermolysis Bullosa in Six Pregnancies at Risk for Recurrence. Journal of Investigative Dermatology, 1995, 104, 456-461.	0.3	47
206	Premature termination codon mutations in the type VII collagen gene (COL7A1) underlie severe recessive dystrophic epidermolysis bullosa. Proceedings of the Association of American Physicians, 1995, 107, 245-52.	2.1	11
207	Expression of 72-kDa Gelatinase (MMP-2), Collagenase (MMP-1), and Tissue Metalloproteinase Inhibitor (TIMP) in Primary Pig Skin Fibroblast Cultures Derived from Radiation-Induced Skin Fibrosis. Journal of Investigative Dermatology, 1994, 102, 945-950.	0.3	52
208	Recurrent nonsense mutations within the type VII collagen gene in patients with severe recessive dystrophic epidermolysis bullosa. American Journal of Human Genetics, 1994, 55, 289-96.	2.6	65
209	A missense mutation in the rod domain of keratin 14 associated with recessive epidermolysis bullosa simplex. Nature Genetics, 1993, 3, 327-332.	9.4	131
210	A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nature Genetics, 1993, 4, 62-66.	9.4	200
211	A homozygous insertion–deletion in the type VII collagen gene (COL7A1) in Hallopeau–Siemens dystrophic epidermolysis bullosa. Nature Genetics, 1993, 5, 287-293.	9.4	135
212	The Molecular Genetics of Dystrophic Epidermolysis Bullosa. Archives of Dermatology, 1993, 129, 1566.	1.7	15
213	The molecular genetics of dystrophic epidermolysis bullosa. Archives of Dermatology, 1993, 129, 1566-1570.	1.7	11
214	The molecular genetics of dystrophic epidermolysis bullosa. Archives of Dermatology, 1993, 129, 1566-70.	1.7	1
215	PCR-based detection of two exonic polymorphisms in the human type VII collagen gene (COL7A1) at 3p21.1. Genomics, 1992, 14, 827-828.	1.3	22
216	Genetic linkage of recessive dystrophic epidermolysis bullosa to the type VII collagen gene Journal of Clinical Investigation, 1992, 90, 1032-1036.	3.9	131

#	Article	IF	CITATIONS
217	Exclusion of linkage between the collagenase gene and generalized recessive dystrophic epidermolysis bullosa phenotype Journal of Clinical Investigation, 1991, 88, 1716-1721.	3.9	29
218	Poikiloderma of Theresa Kindler: Report of a Case with Ultrastrectural Study, and Review of the Literature. Pediatric Dermatology, 1989, 6, 82-90.	0.5	55