Florian Schueder

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8814491/florian-schueder-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38
papers

1,976
citations

20
h-index
g-index

46
ext. papers

2,877
ext. citations

14.5
avg, IF

L-index

#	Paper	IF	Citations
38	3D particle averaging and detection of macromolecular symmetry in localization microscopy. <i>Nature Communications</i> , 2021 , 12, 2847	17.4	6
37	Single-molecule localization microscopy. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		67
36	Detecting structural heterogeneity in single-molecule localization microscopy data. <i>Nature Communications</i> , 2021 , 12, 3791	17.4	3
35	Superaufgellite Erkennung rumlicher Nile mit Proximity-PAINT. Angewandte Chemie, 2021 , 133, 726-73	313.6	
34	Super-Resolution Spatial Proximity Detection with Proximity-PAINT. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 716-720	16.4	3
33	Double- to Single-Strand Transition Induces Forces and Motion in DNA Origami Nanostructures. <i>Advanced Materials</i> , 2021 , 33, e2101986	24	3
32	Localization microscopy at doubled precision with patterned illumination. <i>Nature Methods</i> , 2020 , 17, 59-63	21.6	, 72
31	DNA-Barcoded Fluorescence Microscopy for Spatial Omics. <i>Proteomics</i> , 2020 , 20, e1900368	4.8	O
30	Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. <i>Nature Communications</i> , 2020 , 11, 5768	17.4	13
29	Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. <i>Nature Methods</i> , 2020 , 17, 1018-1024	21.6	35
28	Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically-Encoded Probes for DNA-PAINT. <i>Angewandte Chemie</i> , 2019 , 131, 13138-13142	3.6	13
27	Toward Absolute Molecular Numbers in DNA-PAINT. <i>Nano Letters</i> , 2019 , 19, 8182-8190	11.5	20
26	124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics. <i>Nano Letters</i> , 2019 , 19, 2641-2646	11.5	47
25	Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification. <i>Nature Communications</i> , 2019 , 10, 1268	17.4	39
24	The nucleolus functions as a phase-separated protein quality control compartment. <i>Science</i> , 2019 , 365, 342-347	33.3	185
23	Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically-Encoded Probes for DNA-PAINT. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13004-13008	16.4	57
22	Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo. <i>Scientific Reports</i> , 2019 , 9, 13791	4.9	5

21	Dynamic host-guest interaction enables autonomous single molecule blinking and super-resolution imaging. <i>Chemical Communications</i> , 2019 , 55, 14430-14433	5.8	9
20	An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. <i>Nature Methods</i> , 2019 , 16, 1101-1104	21.6	55
19	Quantifying absolute addressability in DNA origami with molecular resolution. <i>Nature Communications</i> , 2018 , 9, 1600	17.4	73
18	Site-Specific Labeling of Affimers for DNA-PAINT Microscopy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11060-11063	16.4	55
17	Ortsspezifische Funktionalisierung von Affimeren fildie DNA-PAINT-Mikroskopie. <i>Angewandte Chemie</i> , 2018 , 130, 11226-11230	3.6	10
16	Nanometer-scale Multiplexed Super-Resolution Imaging with an Economic 3D-DNA-PAINT Microscope. <i>ChemPhysChem</i> , 2018 , 19, 3024-3034	3.2	19
15	Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. <i>Developmental Cell</i> , 2018 , 47, 205-221.e7	10.2	70
14	Template-free 2D particle fusion in localization microscopy. <i>Nature Methods</i> , 2018 , 15, 781-784	21.6	27
13	Universal Super-Resolution Multiplexing by DNA Exchange. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4052-4055	16.4	62
12	DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. <i>Chemical Science</i> , 2017 , 8, 3080-3091	9.4	117
11	Super-resolution microscopy with DNA-PAINT. <i>Nature Protocols</i> , 2017 , 12, 1198-1228	18.8	360
10	Universelles Superauflaungs-Multiplexing durch DNA-Austausch. <i>Angewandte Chemie</i> , 2017 , 129, 4111-	43.64	7
9	Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. <i>Nature Communications</i> , 2017 , 8, 2090	17.4	83
8	Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. <i>Nature</i> , 2017 , 552, 72-77	50.4	237
7	DNA nanotechnology and fluorescence applications. <i>Current Opinion in Biotechnology</i> , 2016 , 39, 41-47	11.4	31
6	Routing of individual polymers in designed patterns. <i>Nature Nanotechnology</i> , 2015 , 10, 892-8	28.7	142
5	Anle138b and related compounds are aggregation specific fluorescence markers and reveal high affinity binding to Esynuclein aggregates. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2015 , 1850, 1884-90	4	39
4	Localization microscopy at doubled precision with patterned illumination		4

1

Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus

Visualization of loop extrusion by DNA nanoscale tracing in single human cells

Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nano-architecture

in flight muscles