Yapeng Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8814118/publications.pdf

Version: 2024-02-01

516215 713013 22 958 16 21 h-index citations g-index papers 22 22 22 862 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	The health benefits, functional properties, modifications, and applications of pea (<i>Pisum) Tj ETQq1 1 0.784314 Science and Food Safety, 2020, 19, 1835-1876.</i>	rgBT 5.9	Overlock 10 Tf : 137
2	Complexation of Bovine Serum Albumin and Sugar Beet Pectin: Structural Transitions and Phase Diagram. Langmuir, 2012, 28, 10164-10176.	1.6	112
3	Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. LWT - Food Science and Technology, 2017, 76, 1-8.	2.5	93
4	Physicochemical and pH-dependent functional properties of proteins isolated from eight traditional Chinese beans. Food Hydrocolloids, 2021, 112, 106288.	5.6	86
5	Complexation of bovine serum albumin and sugar beet pectin: Stabilising oil-in-water emulsions. Journal of Colloid and Interface Science, 2012, 388, 103-111.	5.0	81
6	Protein/polysaccharide intramolecular electrostatic complex as superior food-grade foaming agent. Food Hydrocolloids, 2020, 101, 105474.	5.6	49
7	Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2955-2971.	5.9	46
8	Improved Sugar Beet Pectin-Stabilized Emulsions through Complexation with Sodium Caseinate. Journal of Agricultural and Food Chemistry, 2013, 61, 1388-1396.	2.4	44
9	Mapping the Complex Phase Behaviors of Aqueous Mixtures of \hat{l}^2 -Carrageenan and Type B Gelatin. Journal of Physical Chemistry B, 2015, 119, 9982-9992.	1.2	36
10	Ambient storage of microencapsulated <i>Lactobacillus plantarum</i> ST-III by complex coacervation of type-A gelatin and gum arabic. Food and Function, 2018, 9, 1000-1008.	2.1	36
11	All-Natural Food-Grade Hydrophilic–Hydrophobic Core–Shell Microparticles: Facile Fabrication Based on Gel-Network-Restricted Antisolvent Method. ACS Applied Materials & Interfaces, 2019, 11, 11936-11946.	4.0	35
12	Prolaminâ€based complexes: Structure design and foodâ€related applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1120-1149.	5.9	35
13	Whey protein isolate/gum arabic intramolecular soluble complexes improving the physical and oxidative stabilities of conjugated linoleic acid emulsions. RSC Advances, 2016, 6, 14635-14642.	1.7	29
14	Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates. Food and Function, 2019, 10, 5922-5930.	2.1	28
15	Properties of binary complexes of whey protein fibril and gum arabic and their functions of stabilizing emulsions and simulating mayonnaise. Innovative Food Science and Emerging Technologies, 2021, 68, 102609.	2.7	24
16	Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 2017, 171, 252-258.	5.1	20
17	Fabrication, Characterization, and Formation Mechanism of Zein–Gum Arabic Nanocomposites in Aqueous Ethanol Solution with a High Ethanol Content. Journal of Agricultural and Food Chemistry, 2020, 68, 13138-13145.	2.4	19
18	Electrostatic complexation of \hat{l}^2 -lactoglobulin aggregates with \hat{l}^2 -carrageenan and the resulting emulsifying and foaming properties. Journal of Dairy Science, 2020, 103, 8709-8720.	1.4	13

#	Article	IF	CITATIONS
19	Fabrication of Composite Structures of Lysozyme Fibril–Zein using Antisolvent Precipitation: Effects of Blending and pH Adjustment Sequences. Journal of Agricultural and Food Chemistry, 2020, 68, 11802-11809.	2.4	12
20	Electrostatic Interaction-Based Fabrication of Calcium Alginate–Zein Core–Shell Microcapsules of Regulable Shapes and Sizes. Langmuir, 2021, 37, 10424-10432.	1.6	12
21	In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement. International Journal of Biological Macromolecules, 2018, 112, 803-808.	3.6	11
22	Corrigendum to $\hat{a} \in \mathbb{Z}$ Electrostatic complexation of \hat{i}^2 -lactoglobulin aggregates with \hat{i}^2 -carrageenan and the resulting emulsifying and foaming properties $\hat{a} \in (J.Dairy Sci. 103:8709 \hat{a} \in (B720)$. Journal of Dairy Science, 2020, 103, 12160.	1.4	0