
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8813667/publications.pdf Version: 2024-02-01

ΥΠΑΝ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	Overcoming the Diffusion Barrier of Mucus and Absorption Barrier of Epithelium by Self-Assembled Nanoparticles for Oral Delivery of Insulin. ACS Nano, 2015, 9, 2345-2356.	14.6	318
2	Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials, 2012, 33, 1573-1582.	11.4	270
3	Efficient mucus permeation and tight junction opening by dissociable "mucus-inert―agent coated trimethyl chitosan nanoparticles for oral insulin delivery. Journal of Controlled Release, 2016, 222, 67-77.	9.9	210
4	Developments of mucus penetrating nanoparticles. Asian Journal of Pharmaceutical Sciences, 2015, 10, 275-282.	9.1	136
5	Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Applied Materials & Interfaces, 2016, 8, 25444-25453.	8.0	127
6	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie - International Edition, 2016, 55, 3309-3312.	13.8	121
7	Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials, 2014, 35, 5171-5187.	11.4	120
8	Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Advanced Drug Delivery Reviews, 2018, 124, 150-163.	13.7	120
9	Multistage Nanovehicle Delivery System Based on Stepwise Size Reduction and Charge Reversal for Programmed Nuclear Targeting of Systemically Administered Anticancer Drugs. Advanced Functional Materials, 2015, 25, 4101-4113.	14.9	118
10	Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery. ACS Applied Materials & Interfaces, 2018, 10, 9916-9928.	8.0	113
11	Mechanism Study of Cellular Uptake and Tight Junction Opening Mediated by Goblet Cell-Specific Trimethyl Chitosan Nanoparticles. Molecular Pharmaceutics, 2014, 11, 1520-1532.	4.6	107
12	Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Applied Materials & Interfaces, 2018, 10, 9315-9324.	8.0	93
13	Subâ€50 nm Nanoparticles with Biomimetic Surfaces to Sequentially Overcome the Mucosal Diffusion Barrier and the Epithelial Absorption Barrier. Advanced Functional Materials, 2016, 26, 2728-2738.	14.9	88
14	A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials, 2015, 65, 43-55.	11.4	85
15	Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials, 2014, 35, 6622-6635.	11.4	76
16	Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. International Journal of Pharmaceutics, 2015, 496, 993-1005.	5.2	61
17	Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharmaceutica Sinica B, 2019, 9, 615-625.	12.0	61
18	Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates. Biomaterials, 2012, 33, 2260-2271.	11.4	59

#	Article	IF	CITATIONS
19	Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle–double emulsion method via the combined use of different solid lipids. Nanomedicine, 2013, 8, 1085-1100.	3.3	59
20	Polymeric Nanomedicine for Tumor-Targeted Combination Therapy to Elicit Synergistic Genotoxicity against Prostate Cancer. ACS Applied Materials & Interfaces, 2015, 7, 6661-6673.	8.0	58
21	Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. Journal of Controlled Release, 2017, 262, 273-283.	9.9	58
22	Dual Stimuli-Responsive Hybrid Polymeric Nanoparticles Self-Assembled from POSS-Based Starlike Copolymer-Drug Conjugates for Efficient Intracellular Delivery of Hydrophobic Drugs. ACS Applied Materials & Interfaces, 2016, 8, 13251-13261.	8.0	51
23	Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway. ACS Applied Materials & Interfaces, 2018, 10, 34039-34049.	8.0	47
24	Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier. Biomaterials, 2020, 262, 120323.	11.4	45
25	The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of "easy uptake hard transcytosis―of ligand-modified nanoparticles in oral drug delivery. Nanoscale, 2018, 10, 1494-1507.	5.6	44
26	The transport mechanism of integrin $\hat{I}\pm$ v \hat{I}^2 3 receptor targeting nanoparticles in Caco-2 cells. International Journal of Pharmaceutics, 2016, 500, 42-53.	5.2	38
27	A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. Journal of Controlled Release, 2020, 325, 38-51.	9.9	38
28	A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Delivery, 2016, 23, 2015-2025.	5.7	37
29	A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 2017, 9, 314-325.	5.6	37
30	G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment. Molecular Pharmaceutics, 2015, 12, 4124-4136.	4.6	36
31	Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta Pharmaceutica Sinica B, 2022, 12, 2029-2042.	12.0	35
32	Enhanced Reactive Oxygen Species Generation by Mitochondria Targeting of Anticancer Drug To Overcome Tumor Multidrug Resistance. Biomacromolecules, 2019, 20, 3755-3766.	5.4	34
33	Mitochondrial targeted strategies and their application for cancer and other diseases treatment. Journal of Pharmaceutical Investigation, 2020, 50, 271-293.	5.3	34
34	Two birds, one stone: dual targeting of the cancer cell surface and subcellular mitochondria by the galectin-3-binding peptide G3-C12. Acta Pharmacologica Sinica, 2017, 38, 806-822.	6.1	32
35	Time-staggered delivery of docetaxel and H1-S6A,F8A peptide for sequential dual-strike chemotherapy through tumor priming and nuclear targeting. Journal of Controlled Release, 2016, 232, 62-74.	9.9	31
36	Restoration and Enhancement of Immunogenic Cell Death of Cisplatin by Coadministration with Digoxin and Conjugation to HPMA Copolymer. ACS Applied Materials & Interfaces, 2020, 12, 1606-1616.	8.0	30

#	Article	IF	CITATIONS
37	Dual-pH responsive micelle platform for co-delivery of axitinib and doxorubicin. International Journal of Pharmaceutics, 2016, 507, 50-60.	5.2	29
38	Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug Delivery Mitigates Cancer Metastasis. ACS Nano, 2022, 16, 50-67.	14.6	29
39	Charge-Reversible Multifunctional HPMA Copolymers for Mitochondrial Targeting. ACS Applied Materials & Interfaces, 2017, 9, 27563-27574.	8.0	27
40	Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. Journal of Materials Chemistry B, 2018, 6, 593-601.	5.8	27
41	Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into "Easy Entry, Hard Transcytosis―of Active Targeting System in Oral Administration. Molecular Pharmaceutics, 2018, 15, 4273-4283.	4.6	27
42	Exendin-4 Loaded Nanoparticles with a Lipid Shell and Aqueous Core Containing Micelles for Enhanced Intestinal Absorption. Journal of Biomedical Nanotechnology, 2015, 11, 865-876.	1.1	25
43	Dual-sensitive and biodegradable core-crosslinked HPMA copolymer–doxorubicin conjugate-based nanoparticles for cancer therapy. Polymer Chemistry, 2017, 8, 2370-2380.	3.9	25
44	Targeting the Opening of Mitochondrial Permeability Transition Pores Potentiates Nanoparticle Drug Delivery and Mitigates Cancer Metastasis. Advanced Science, 2021, 8, 2002834.	11.2	25
45	Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration. International Journal of Pharmaceutics, 2017, 520, 216-227.	5.2	24
46	Redirecting Chemotherapeutics to the Endoplasmic Reticulum Increases Tumor Immunogenicity and Potentiates Antiâ€PD‣1 Therapy. Small, 2022, 18, e2104591.	10.0	23
47	Core–shell stability of nanoparticles plays an important role for overcoming the intestinal mucus and epithelium barrier. Journal of Materials Chemistry B, 2016, 4, 5831-5841.	5.8	22
48	Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. Journal of Controlled Release, 2021, 334, 248-262.	9.9	22
49	Stimuli-responsive nano vehicle enhances cancer immunotherapy by coordinating mitochondria-targeted immunogenic cell death and PD-L1 blockade. Acta Pharmaceutica Sinica B, 2022, 12, 2533-2549.	12.0	22
50	Systematic evaluation of the toxicity and biodistribution of virus mimicking mucus-penetrating DLPC-NPs as oral drug delivery system. International Journal of Pharmaceutics, 2017, 530, 89-98.	5.2	21
51	Immunogenic hydrogel toolkit disturbing residual tumor "seeds―and pre-metastatic "soil―for inhibition of postoperative tumor recurrence and metastasis. Acta Pharmaceutica Sinica B, 2022, 12, 3383-3397.	12.0	21
52	A strategy for developing effective orally-delivered nanoparticles through modulation of the surface "hydrophilicity/hydrophobicity balance― Journal of Materials Chemistry B, 2017, 5, 1302-1314.	5.8	18
53	Programmed drug delivery system based on optimized "size decrease and hydrophilicity/hydrophobicity transformation―for enhanced hepatocellular carcinoma therapy of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1111-1122.	3.3	18
54	Improved anticancer efficacy of doxorubicin mediated by human-derived cell-penetrating peptide dNP2. International Journal of Pharmaceutics, 2018, 551, 14-22.	5.2	18

#	Article	IF	CITATIONS
55	Sequentially Targeting Cancerâ€Associated Fibroblast and Mitochondria Alleviates Tumor Hypoxia and Inhibits Cancer Metastasis by Preventing "Soil―Formation and "Seed―Dissemination. Advanced Functional Materials, 2021, 31, 2010283.	14.9	18
56	Subcellular co-delivery of two different site-oriented payloads for tumor therapy. Nanoscale, 2017, 9, 1547-1558.	5.6	17
57	Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. Journal of Materials Chemistry B, 2017, 5, 7175-7185.	5.8	17
58	Mitochondria-targeting and cell-penetrating peptides-co-modified HPMA copolymers for enhancing therapeutic efficacy of 1±-tocopheryl succinate. Journal of Materials Chemistry B, 2018, 6, 7674-7683.	5.8	16
59	Coordination of rigidity modulation and targeting ligand modification on orally-delivered nanoparticles for the treatment of liver fibrosis. Journal of Controlled Release, 2022, 341, 215-226.	9.9	15
60	Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano Today, 2022, 42, 101356.	11.9	14
61	Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. Journal of Materials Chemistry B, 2020, 8, 2636-2649.	5.8	13
62	Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. Journal of Controlled Release, 2020, 323, 151-160.	9.9	13
63	Synergistic enhancement of anticancer therapeutic efficacy of HPMA copolymer doxorubicin conjugates via combination of ligand modification and stimuli-response srategies. International Journal of Pharmaceutics, 2018, 536, 450-458.	5.2	11
64	Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS Nano, 2022, 16, 6064-6079.	14.6	11
65	Stimuliâ€Responsive Nanoparticles Combining Photodynamic Therapy and Mitochondria Disruption Suppressed Tumor Metastasis. Advanced Materials Interfaces, 2021, 8, 2002200.	3.7	10
66	Enhanced intracellular and intranuclear drug delivery mediated by biomimetic peptide SVS-1 for anticancer therapy. International Journal of Pharmaceutics, 2019, 570, 118668.	5.2	9
67	Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Biomaterials Science, 2021, 9, 2903-2916.	5.4	9
68	Concurrent impairment of nucleus and mitochondria for synergistic inhibition of cancer metastasis. International Journal of Pharmaceutics, 2021, 608, 121077.	5.2	9
69	Split bullets loaded nanoparticles for amplified immunotherapy. Journal of Controlled Release, 2022, 347, 199-210.	9.9	9
70	The impact of the HPMA polymer structure on the targeting performance of the conjugated hydrophobic ligand. RSC Advances, 2015, 5, 14858-14870.	3.6	8
71	An in vitro investigation of a detachable fork-like structure as efficient nuclear-targeted sub-unit in A2780 cell cultures. International Journal of Pharmaceutics, 2016, 500, 100-109.	5.2	8
72	Active Targeting Nanoparticle Selfâ€Assembled from Cisplatinâ€Palbociclib Amphiphiles Ensures Optimal Drug Ratio for Combinatorial Chemotherapy. Advanced Therapeutics, 2021, 4, 2000261.	3.2	8

#	Article	IF	CITATIONS
73	Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. Journal of Materials Chemistry B, 2021, 9, 1707-1718.	5.8	6
74	Co-delivery of mitochondrial targeted lonidamine and PIN1 inhibitor ATRA by nanoparticulate systems for synergistic metastasis suppression. Nano Research, 2022, 15, 3376-3386.	10.4	6
75	Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion. Molecular Pharmaceutics, 2016, 13, 3069-3079.	4.6	5
76	Investigation of FcRnâ€Mediated Transepithelial Mechanisms for Oral Nanoparticle Delivery Systems. Advanced Therapeutics, 2021, 4, 2100145.	3.2	5
77	Combination of mitochondria targeting doxorubicin with Bcl-2 function-converting peptide NuBCP-9 for synergistic breast cancer metastasis inhibition. Journal of Materials Chemistry B, 2021, 9, 1336-1350.	5.8	5
78	Combination of mitochondria impairment and inflammation blockade to combat metastasis. Journal of Controlled Release, 2022, 341, 753-768.	9.9	5
79	Improvement of anti-tumor abilities on human non-small cell lung carcinoma by micellization and cross-linking of N-(2-hydroxypropyl) methacrylamide copolymers. Journal of Drug Targeting, 2015, 23, 821-831.	4.4	4
80	A liposome-based combination strategy using doxorubicin and a PI3K inhibitor efficiently inhibits pre-metastatic initiation by acting on both tumor cells and tumor-associated macrophages. Nanoscale, 2022, 14, 4573-4587.	5.6	4
81	Enhanced nuclear delivery of H1-S6A, F8A peptide by NrTP6-modified polymeric platform. International Journal of Pharmaceutics, 2020, 580, 119224.	5.2	3
82	Enhanced cellular uptake by non-endocytic pathway for tumor therapy. Journal of Materials Chemistry B, 2018, 6, 7411-7419.	5.8	2
83	Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor. Nano Research, 2022, 15, 3446-3457.	10.4	1