Douwe van Hinsbergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8813264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paleogeography of the West Burma Block and the eastern Neotethys Ocean: Constraints from Cenozoic sediments shed onto the Andaman-Nicobar ophiolites. Gondwana Research, 2022, 103, 335-361.	3.0	6
2	Preparing the ground for plateau growth: Late Neogene Central Anatolian uplift in the context of orogenic and geodynamic evolution since the Cretaceous. Tectonophysics, 2022, 822, 229131.	0.9	8
3	Influence of Data Filters on the Position and Precision of Paleomagnetic Poles: What Is the Optimal Sampling Strategy?. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	14
4	Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone. Nature Geoscience, 2022, 15, 233-239.	5.4	9
5	On Pole Position: Causes of Dispersion of the Paleomagnetic Poles Behind Apparent Polar Wander Paths. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	14
6	Indian plate paleogeography, subduction and horizontal underthrusting below Tibet: paradoxes, controversies and opportunities. National Science Review, 2022, 9, .	4.6	13
7	Jurassic true polar wander recorded by the Lhasa terrane on its northward journey from Gondwana to Eurasia. Earth and Planetary Science Letters, 2022, 592, 117609.	1.8	12
8	Tectonic Evolution of the Nevadoâ€Filábride Complex (Sierra de Los Filábres, Southeastern Spain): Insights From New Structural and Geochronological Data. Tectonics, 2022, 41, .	1.3	9
9	Geochemical and geochronological record of the Andaman Ophiolite, SE Asia: From back-arc to forearc during subduction polarity reversal?. Lithos, 2021, 380-381, 105853.	0.6	4
10	Reliability of palaeomagnetic poles from sedimentary rocks. Geophysical Journal International, 2021, 225, 1281-1303.	1.0	21
11	Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?. Earth-Science Reviews, 2021, 215, 103551.	4.0	40
12	A record of plume-induced plate rotation triggering subduction initiation. Nature Geoscience, 2021, 14, 626-630.	5.4	50
13	Reconstructing Jurassic retaceous Intraâ€Oceanic Subduction Evolution in the Northwestern Panthalassa Ocean Using Ocean Plate Stratigraphy From Hokkaido, Japan. Tectonics, 2021, 40, e2019TC005673.	1.3	10
14	Deciphering paleogeography from orogenic architecture: Constructing orogens in a future supercontinent as thought experiment. Numerische Mathematik, 2021, 321, 955-1031.	0.7	15
15	Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 2020, 81, 79-229.	3.0	334
16	Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 2020, 78, 308-374.	3.0	195
17	Magmatic Forcing of Cenozoic Climate?. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016460.	1.4	15
18	Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis. Terra Nova, 2020, 32, 141-150.	0.9	20

Douwe van Hinsbergen

#	Article	IF	CITATIONS
19	History of Subduction Polarity Reversal During Arcâ€Continent Collision: Constraints From the Andaman Ophiolite and its Metamorphic Sole. Tectonics, 2020, 39, e2019TC005762.	1.3	29
20	Eocene seismogenic reactivation of a Jurassic ductile shear zone at Cap de Creus, Pyrenees, NE Spain. Journal of Structural Geology, 2020, 134, 103994.	1.0	3
21	Does pulsed Tibetan deformation correlate with Indian plate motion changes?. Earth and Planetary Science Letters, 2020, 536, 116144.	1.8	70
22	Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: constraints from ophiolites in eastern Mediterranean. Lithos, 2020, 360-361, 105438.	0.6	15
23	Caribbean intra-plate deformation: Paleomagnetic evidence from St. Barthélemy Island for post-Oligocene rotation in the Lesser Antilles forearc. Tectonophysics, 2020, 777, 228323.	0.9	11
24	Anisotropy of Magnetic Susceptibility (AMS) Analysis of the Gonjo Basin as an Independent Constraint to Date Tibetan Shortening Pulses. Geophysical Research Letters, 2020, 47, e2020GL087531.	1.5	21
25	Arcâ€īype Magmatism Due to Continentalâ€Edge Plowing Through Ancient Subductionâ€Enriched Mantle. Geophysical Research Letters, 2020, 47, e2020GL087484.	1.5	15
26	Andaman Ophiolite: An Overview. Society of Earth Scientists Series, 2020, , 1-17.	0.2	3
27	Towards FAIR Paleomagnetic Data Management Through Paleomagnetism.org 2.0. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008838.	1.0	39
28	Diachronous demise of the Neotethys Ocean as a driver for non-cylindrical orogenesis in Anatolia. Tectonophysics, 2019, 760, 95-106.	0.9	23
29	The Caribbean and Farallon Plates Connected: Constraints From Stratigraphy and Paleomagnetism of the Nicoya Peninsula, Costa Rica. Journal of Geophysical Research: Solid Earth, 2019, 124, 6243-6266.	1.4	26
30	Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone. Earth and Planetary Science Letters, 2019, 518, 183-196.	1.8	39
31	How high were these mountains?. Science, 2019, 363, 928-929.	6.0	7
32	Reconstruction of Subduction and Backâ€Arc Spreading in the NW Pacific and Aleutian Basin: Clues to Causes of Cretaceous and Eocene Plate Reorganizations. Tectonics, 2019, 38, 1367-1413.	1.3	66
33	Thermal history of the western Central Taurides fold-thrust belt: Implications for Cenozoic vertical motions of southern Central Anatolia. , 2019, 15, 1927-1942.		4
34	Comment on "Comparing Paleomagnetic Study Means With Apparent Wander Paths: A Case Study and Paleomagnetic Test of the Greater India Versus Greater Indian Basin Hypotheses―by David B. Rowley. Tectonics, 2019, 38, 4516-4520.	1.3	6
35	Tectonic motion in oblique subduction forearcs: insights from the revisited Middle and Upper Pleistocene deposits of Rhodes, Greece. Journal of the Geological Society, 2019, 176, 78-96.	0.9	19
36	Tectonic reconstruction of Cyprus reveals Late Miocene continental collision of Africa and Anatolia. Gondwana Research, 2019, 68, 158-173.	3.0	23

#	Article	IF	CITATIONS
37	Testing Early Cretaceous Africa–South America fits with new palaeomagnetic data from the Etendeka Magmatic Province (Namibia). Tectonophysics, 2019, 760, 23-35.	0.9	8
38	Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics, 2019, 760, 69-94.	0.9	129
39	Large-scale rotations of the Chortis Block (Honduras) at the southern termination of the Laramide flat slab. Tectonophysics, 2019, 760, 36-57.	0.9	19
40	Triassic (Anisian and Rhaetian) palaeomagnetic poles from the Germanic Basin (Winterswijk, the) Tj ETQq0 0 0	rgBT /Qver	lock 10 Tf 50
41	Post-remagnetisation vertical axis rotation and tilting of the Murihiku Terrane (North Island, New) Tj ETQq1 1 0	.784314 rg 1.0	gBT <u>{</u> Overlock
42	Reconstructing Plate Boundaries in the Jurassic Neoâ€īethys From the East and West Vardar Ophiolites (Greece and Serbia). Tectonics, 2018, 37, 858-887.	1.3	60
43	53–43ÂMa Deformation of Eastern Tibet Revealed by Three Stages of Tectonic Rotation in the Gongjue Basin. Journal of Geophysical Research: Solid Earth, 2018, 123, 3320-3338.	1.4	26
44	Puzzling features of western Mediterranean tectonics explained by slab dragging. Nature Geoscience, 2018, 11, 211-216.	5.4	73
45	Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia). Lithos, 2018, 296-299, 297-315.	0.6	35
46	A long-lived Late Cretaceous–early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey. Earth and Planetary Science Letters, 2018, 481, 111-124.	1.8	18
47	Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 2018, 723, 309-448.	0.9	263
48	Reply to discussion on â€~Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): a record of pre-drift extension of the Piemonte–Ligurian Ocean?' <i>Journal of the Geological Society, London</i> , 174, 289–300. Journal of the Geological Society, 2018, 175, 189-191.	0.9	0
49	Paleomagnetic constraints on the kinematic relationship between the Guerrero terrane (Mexico) and North America since Early Cretaceous time. Bulletin of the Geological Society of America, 2018, 130, 1131-1142.	1.6	20
50	Paleomagnetic Constraints From the Baoshan Area on the Deformation of the Qiangtangâ€Sibumasu Terrane Around the Eastern Himalayan Syntaxis. Journal of Geophysical Research: Solid Earth, 2018, 123, 977-997.	1.4	32
51	The Dynamic History of 220ÂMillion Years of Subduction Below Mexico: A Correlation Between Slab Geometry and Overriding Plate Deformation Based on Geology, Paleomagnetism, and Seismic Tomography. Geochemistry, Geophysics, Geosystems, 2018, 19, 4649-4672.	1.0	24
52	Mantle Sources of Recent Anatolian Intraplate Magmatism: A Regional Plume or Local Tectonic Origin?. Tectonics, 2018, 37, 4535-4566.	1.3	20
53	Palinspastic Reconstruction Versus Crossâ€Section Balancing: How Complete Is the Central Taurides Foldâ€Thrust Belt (Turkey)?. Tectonics, 2018, 37, 4285-4310.	1.3	14
54	First Balanced Cross Section Across the Taurides Foldâ€Thrust Belt: Geological Constraints on the Subduction History of the Antalya Slab in Southern Anatolia. Tectonics, 2018, 37, 3738-3759.	1.3	13

Douwe van Hinsbergen

#	Article	IF	CITATIONS
55	Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia. Solid Earth, 2018, 9, 295-322.	1.2	19
56	Rotations of Normal Fault Blocks Quantify Extension in the Central Tauride Intramontane Basins, SW Turkey. Tectonics, 2018, 37, 2307-2327.	1.3	8
57	The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling. Solid Earth, 2018, 9, 759-776.	1.2	26
58	Southwest Pacific Absolute Plate Kinematic Reconstruction Reveals Major Cenozoic Tongaâ€Kermadec Slab Dragging. Tectonics, 2018, 37, 2647-2674.	1.3	36
59	Cenozoic Rotation History of Borneo and Sundaland, SE Asia Revealed by Paleomagnetism, Seismic Tomography, and Kinematic Reconstruction. Tectonics, 2018, 37, 2486-2512.	1.3	36
60	Early Cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth and Planetary Science Letters, 2018, 498, 348-361.	1.8	37
61	Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nature Geoscience, 2018, 11, 688-695.	5.4	153
62	Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 2018, 496, 120-131.	1.8	66
63	Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the Indiaâ€Asia collision. Journal of Geophysical Research: Solid Earth, 2017, 122, 808-825.	1.4	47
64	Bootstrapped total least squares orocline test: A robust method to quantify vertical-axis rotation patterns in orogens, with examples from the Cantabrian and Aegean oroclines. Lithosphere, 2017, 9, 499-511.	0.6	16
65	Mélange versus forearc contributions to sedimentation and uplift, during rapid denudation of a young Banda forearc-continent collisional belt. Journal of Asian Earth Sciences, 2017, 138, 186-210.	1.0	6
66	lvrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system. Swiss Journal of Geosciences, 2017, 110, 581-612.	0.5	119
67	South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nature Communications, 2017, 8, 15249.	5.8	60
68	Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction. Earth-Science Reviews, 2017, 171, 58-77.	4.0	116
69	Reconciling regional continuity with local variability in structure, uplift and exhumation of the Timor orogen. Gondwana Research, 2017, 49, 364-386.	3.0	10
70	Kinematics of Late Cretaceous subduction initiation in the Neoâ€Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. Journal of Geophysical Research: Solid Earth, 2017, 122, 3953-3976.	1.4	78
71	Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research: Solid Earth, 2017, 122, 2434-2456.	1.4	37
72	Vertical-axis rotations accommodated along the Mid-Cycladic lineament on Paros Island in the extensional heart of the Aegean orocline (Greece). Lithosphere, 2017, 9, 78-99.	0.6	19

#	Article	IF	CITATIONS
73	Cretaceous–Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin. Earth and Planetary Science Letters, 2017, 477, 97-107.	1.8	62
74	Rapid fore-arc extension and detachment-mode spreading following subduction initiation. Earth and Planetary Science Letters, 2017, 478, 76-88.	1.8	17
75	Miocene tectonic history of the Central Tauride intramontane basins, and the paleogeographic evolution of the Central Anatolian Plateau. Global and Planetary Change, 2017, 158, 83-102.	1.6	16
76	Reply to comment by Z. Yi et al. on "Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the Indiaâ€Asia collision― Journal of Geophysical Research: Solid Earth, 2017, 122, 4859-4863.	1.4	6
77	Unfeasible subduction?. Nature Geoscience, 2017, 10, 878-879.	5.4	4
78	Comment on "Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints―by Barnettâ€Moore Et Al Tectonics, 2017, 36, 3277-3285.	1.3	13
79	Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): a record of pre-drift extension of the Piemonte–Ligurian Ocean?. Journal of the Geological Society, 2017, 174, 289-300.	0.9	18
80	Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic. Climate of the Past, 2016, 12, 1635-1644.	1.3	41
81	Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 2016, 35, 983-1014.	1.3	97
82	Paleomagnetism.org: An online multi-platform open source environment for paleomagnetic data analysis. Computers and Geosciences, 2016, 93, 127-137.	2.0	173
83	Cretaceous slab break-off in the Pyrenees: Iberian plate kinematics in paleomagnetic and mantle reference frames. Gondwana Research, 2016, 34, 49-59.	3.0	47
84	Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology, 2016, 44, 727-730.	2.0	118
85	On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean. Science Advances, 2016, 2, e1600022.	4.7	47
86	Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey). Tectonics, 2016, 35, 2385-2416.	1.3	51
87	A Miocene onset of the modern extensional regime in the Isparta Angle: constraints from the Yalvaç Basin (southwest Turkey). International Journal of Earth Sciences, 2016, 105, 369-398.	0.9	21
88	Late Neogene oroclinal bending in the central Taurides: A record of terminal eastward subduction in southern Turkey?. Earth and Planetary Science Letters, 2016, 434, 75-90.	1.8	29
89	Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis. Special Paper of the Geological Society of America, 2015, , 589-606.	0.5	103
90	Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supraâ€subduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2015, 16, 1753-1770.	1.0	107

#	Article	IF	CITATIONS
91	Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochemistry, Geophysics, Geosystems, 2015, 16, 1771-1785.	1.0	97
92	Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography. Tectonics, 2015, 34, 875-906.	1.3	104
93	A Paleolatitude Calculator for Paleoclimate Studies. PLoS ONE, 2015, 10, e0126946.	1.1	376
94	Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?. Climate of the Past, 2015, 11, 1751-1767.	1.3	19
95	Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the Indiaâ€Asia collision?. Journal of Geophysical Research: Solid Earth, 2015, 120, 42-66.	1.4	38
96	What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics, 2015, 34, 594-622.	1.3	50
97	Paleolatitudes of the <scp>T</scp> ibetan <scp>H</scp> imalaya from primary and secondary magnetizations of <scp>J</scp> urassic to <scp>L</scp> ower <scp>C</scp> retaceous sedimentary rocks. Geochemistry, Geophysics, Geosystems, 2015, 16, 77-100.	1.0	51
98	Paleomagnetic tests of tectonic reconstructions of the Indiaâ€Asia collision zone. Geophysical Research Letters, 2015, 42, 2642-2649.	1.5	46
99	Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility. Tectonophysics, 2015, 665, 236-250.	0.9	29
100	Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 2015, 415, 142-153.	1.8	100
101	Triassic to Cenozoic multi-stage intra-plate deformation focused nearÂthe Bogd Fault system, Gobi Altai, Mongolia. Geoscience Frontiers, 2015, 6, 723-740.	4.3	21
102	Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin,) Tj ETQq0 0 0 rgBT	/Qyerlock	10 Tf 50 30
103	Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 2015, 43, 475-478.	2.0	129
104	Reply to the Comment by Côme Lefebvre on the paper: 'Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin' by Advokaat et al. 2014. International Geology Review, 2015, 57, 1712-1714.	1.1	0
105	Australia going down under: Quantifying continental subduction during arc-continent accretion in Timor-Leste. , 2015, 11, 1860-1883.		51
106	Plate tectonic controls on atmospheric CO ₂ levels since the Triassic. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4380-4385.	3.3	122
107	Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. International Geology Review, 2014, 56, 1813-1836.	1.1	41
108	Absolute plate motions and regional subduction evolution. Geochemistry, Geophysics, Geosystems, 2014, 15, 3780-3792	1.0	19

#	Article	IF	CITATIONS
109	Did Adria rotate relative to Africa?. Solid Earth, 2014, 5, 611-629.	1.2	37
110	Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. , 2014, , .		78
111	Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. Geochemistry, Geophysics, Geosystems, 2014, 15, 923-944.	1.0	67
112	Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics, 2014, 33, 393-419.	1.3	258
113	Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth-Science Reviews, 2014, 138, 102-136.	4.0	211
114	Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth and Planetary Science Letters, 2014, 401, 183-195.	1.8	72
115	Untangling inconsistent magnetic polarity records through an integrated rock magnetic analysis: A case study on Neogene sections in East Timor. Geochemistry, Geophysics, Geosystems, 2014, 15, 2531-2554.	1.0	26
116	Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3â€Ð numerical modeling. Journal of Geophysical Research: Solid Earth, 2014, 119, 5876-5902.	1.4	99
117	Resolving spatial heterogeneities in exhumation and surface uplift in Timor-Leste: Constraints on deformation processes in young orogens. Tectonics, 2014, 33, 1089-1112.	1.3	21
118	Reconstructing the geometry of central Anatolia during the late Cretaceous: Large-scale Cenozoic rotations and deformation between the Pontides and Taurides. Earth and Planetary Science Letters, 2013, 366, 83-98.	1.8	81
119	Late Eocene evolution of the Çiçekdağı Basin (central Turkey): Syn-sedimentary compression during microcontinent–continent collision in central Anatolia. Tectonophysics, 2013, 602, 286-299.	0.9	39
120	Kinematics of Jurassic ultra-slow spreading in the Piemonte Ligurian ocean. Earth and Planetary Science Letters, 2013, 380, 138-150.	1.8	71
121	Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 2013, 41, 315-318.	2.0	327
122	The African Plate: A history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 2013, 604, 4-25.	0.9	164
123	Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India–Asia collision. Geophysical Journal International, 2013, 194, 1390-1411.	1.0	59
124	Reply to Aitchison and Ali: Reconciling Himalayan ophiolite and Asian magmatic arc records with a two-stage India-Asia collision model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2646-E2646.	3.3	10
125	Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geoscience, 2012, 5, 526-533.	5.4	152
126	Earth at 200Ma: Global palaeogeography refined from CAMP palaeomagnetic data. Earth and Planetary Science Letters, 2012, 331-332, 67-79.	1.8	58

#	Article	IF	CITATIONS
127	Map view restoration of Aegean–West Anatolian accretion and extension since the Eocene. Tectonics, 2012, 31, .	1.3	128
128	Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geoscience, 2012, 5, 215-219.	5.4	106
129	Reply to comment by Ali and Aitchison on "Restoration of Cenozoic deformation in Asia, and the size of Greater India― Tectonics, 2012, 31, .	1.3	4
130	Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 2012, 114, 325-368.	4.0	1,088
131	The Padre Miguel Ignimbrite Suite, central Honduras: Paleomagnetism, geochronology, and tectonic implications. Tectonophysics, 2012, 574-575, 144-157.	0.9	18
132	Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7659-7664.	3.3	548
133	Reply to Genç and Yürür〙s comments on: "Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, Central Turkey― Journal of Structural Geology, 2012, 36, 90-93.	1.0	4
134	Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey. Tectonophysics, 2012, 532-535, 134-155.	0.9	35
135	The formation and evolution of Africa from the Archaean to Present: introduction. Geological Society Special Publication, 2011, 357, 1-8.	0.8	26
136	Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. Journal of Geophysical Research, 2011, 116, .	3.3	315
137	Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics, 2011, 30, .	1.3	224
138	Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophysical Journal International, 2011, 186, 509-520.	1.0	280
139	Formation and fragmentation of a late Miocene supradetachment basin in central Crete: implications for exhumation mechanisms of highâ€pressure rocks in the Aegean forearc. Basin Research, 2011, 23, 678-701.	1.3	52
140	Pervasive Palaeogene remagnetization of the central Taurides fold-and-thrust belt (southern Turkey) and implications for rotations in the Isparta Angle. Geophysical Journal International, 2011, 184, 1090-1112.	1.0	32
141	A new 200 Ma paleomagnetic pole for Africa, and paleo-secular variation scatter from Central Atlantic Magmatic Province (CAMP) intrusives in Morocco (Ighrem and Foum Zguid dykes). Geophysical Journal International, 2011, 185, 1220-1234.	1.0	23
142	Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, central Turkey. Journal of Structural Geology, 2011, 33, 1220-1236.	1.0	48
143	Direct terrestrial–marine correlation demonstrates surprisingly late onset of the last interglacial in central Europe. Quaternary Research, 2011, 75, 213-218.	1.0	53
144	Palaeoposition of the Seychelles microcontinent in relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous-Early Palaeogene time. Geological Society Special Publication, 2011, 357, 229-252.	0.8	40

#	Article	IF	CITATIONS
145	A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey. Earth-Science Reviews, 2010, 102, 60-76.	4.0	109
146	Concurrent tectonic and climatic changes recorded in upper Tortonian sediments from the Eastern Mediterranean. Terra Nova, 2010, 22, 52-63.	0.9	5
147	The North Atlantic Igneous Province reconstructed and its relation to the Plume Generation Zone: the Antrim Lava Group revisited. Geophysical Journal International, 2010, , no-no.	1.0	15
148	Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophysical Journal International, 2010, 182, 1189-1198.	1.0	224
149	Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 2010, 3, 36-40.	5.4	339
150	Jurassic–Cretaceous low paleolatitudes from the circum-Black Sea region (Crimea and Pontides) due to True Polar Wander. Earth and Planetary Science Letters, 2010, 296, 210-226.	1.8	27
151	New late Paleozoic paleopoles from the Donbas Foldbelt (Ukraine): Implications for the Pangea A vs. B controversy. Earth and Planetary Science Letters, 2010, 297, 18-33.	1.8	31
152	Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth and Planetary Science Letters, 2010, 297, 674-686.	1.8	155
153	Persistently low Asian paleolatitudes: Implications for the India-Asia collision history. Tectonics, 2010, 29, n/a-n/a.	1.3	53
154	Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics, 2010, 29, n/a-n/a.	1.3	86
155	Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 2010, 29, .	1.3	72
156	Neogene brittle detachment faulting on Kos (E Greece): implications for a southern break-away fault of the Menderes metamorphic core complex (western Turkey). Geological Society Special Publication, 2009, 311, 311-320.	0.8	5
157	Geodynamics of collision and collapse at the Africa–Arabia–Eurasia subduction zone – an introduction. Geological Society Special Publication, 2009, 311, 1-7.	0.8	6
158	Sequential development of interfering metamorphic core complexes: numerical experiments and comparison with the Cyclades, Greece. Geological Society Special Publication, 2009, 311, 257-292.	0.8	31
159	Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba. Journal of Structural Geology, 2009, 31, 1130-1144.	1.0	26
160	Early Cretaceous syn-rotational extension in the Organyà basin—New constraints on the palinspastic position of Iberia during its rotation. Tectonophysics, 2009, 473, 312-323.	0.9	37
161	Oligocene–Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geological Society Special Publication, 2009, 311, 107-132.	0.8	90
162	No vertical axis rotations during Neogene transpressional orogeny in the NE Gobi Altai: coinciding Mongolian and Eurasian early Cretaceous apparent polar wander paths. Geophysical Journal International, 2008, 173, 105-126.	1.0	50

#	Article	IF	CITATIONS
163	Comment on `Tectonoâ€sedimentary evolution of lower to middle Miocene halfgraben basins related to an extensional detachment fault (western Crete, Greece)' by M. Seidel, E. Seidel and B. Stöckhert. Terra Nova, 2008, 20, 414-416.	0.9	6
164	Tracking provenance change during the late Miocene in the eastern Mediterranean using geochemical and environmental magnetic parameters. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	19
165	Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 2008, 169, 3-19.	0.7	148
166	No significant post-Eocene rotation of the Moesian Platform and Rhodope (Bulgaria): Implications for the kinematic evolution of the Carpathian and Aegean arcs. Earth and Planetary Science Letters, 2008, 273, 345-358.	1.8	59
167	Paleogene Foredeep Basin Deposits of North-Central Cuba: A Record of Arc-Continent Collision between the Caribbean and North American Plates. International Geology Review, 2008, 50, 863-884.	1.1	57
168	Discrete Plio-Pleistocene phases of tilting and counterclockwise rotation in the southeastern Aegean arc (Rhodos, Greece): early Pliocene formation of the south Aegean left-lateral strike-slip system. Journal of the Geological Society, 2007, 164, 1133-1144.	0.9	58
169	Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Research, 2006, 18, 103-124.	1.3	129
170	Deformation of western Greece during Neogene clockwise rotation and collision with Apulia. International Journal of Earth Sciences, 2006, 95, 463-490.	0.9	78
171	Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 2005, 33, 325.	2.0	296
172	Underthrusting and exhumation: A comparison between the External Hellenides and the "hot― Cycladic and "cold―South Aegean core complexes (Greece). Tectonics, 2005, 24, n/a-n/a.	1.3	49
173	Clockwise rotations recorded in redbeds from the Jinggu Basin of northwestern Indochina. Bulletin of the Geological Society of America, 0, , B31637.1.	1.6	11