Tejal A Desai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8813204/tejal-a-desai-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

216 106 64 12,748 h-index g-index citations papers 6.63 228 13,974 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
216	Synthesis and Preliminary Biological Assessment of Carborane-Loaded Theranostic Nanoparticles to Target Prostate-Specific Membrane Antigen. <i>ACS Applied Materials & Discrete Specific Membrane Antigen</i> . ACS Applied Materials & Discrete Specific Membrane Antigen. ACS Applied Membrane Active A	9-8 4 75	2 ¹
215	Bioinspired Polymeric High Aspect Ratio Particles with Asymmetric Janus Functionalities. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000057	О	1
214	Impact of Microdevice Geometry on Transit and Retention in the Murine Gastrointestinal Tract. ACS Biomaterials Science and Engineering, 2021,	5.5	1
213	Micro- and nanoscale biophysical cues for cardiovascular disease therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2021 , 34, 102365	6	1
212	Perspectives on disparities in scientific visibility. <i>Nature Reviews Materials</i> , 2021 , 6, 556-559	73.3	3
211	DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. <i>Nature Nanotechnology</i> , 2021 , 16, 214-223	28.7	18
210	Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity. <i>Molecular Pharmaceutics</i> , 2021 , 18, 1014-1025	5.6	4
209	Fund Black scientists. <i>Cell</i> , 2021 , 184, 561-565	56.2	42
208	Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2021 , 321, H149-H160	5.2	2
207	Modulating the foreign body response of implants for diabetes treatment. <i>Advanced Drug Delivery Reviews</i> , 2021 , 174, 87-113	18.5	13
206	Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. <i>International Journal of Pharmaceutics</i> , 2021 , 607, 120924	6.5	9
205	Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2020 , 167, 89-108	18.5	31
204	TiO-Based Nanotopographical Cues Attenuate the Restenotic Phenotype in Primary Human Vascular Endothelial and Smooth Muscle Cells. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 923-9	3 2 ·5	6
203	Near-Infrared Optical Nanosensors for Continuous Detection of Glucose. <i>Journal of Diabetes Science and Technology</i> , 2020 , 14, 204-211	4.1	7
202	An Injectable Cytokine Trap for Local Treatment of Autoimmune Disease. <i>Biomaterials</i> , 2020 , 230, 1196	2 6 5.6	10
201	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-6	52 18.5	45
200	Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. <i>ACS Nano</i> , 2020 , 14, 13192-13202	16.7	4

(2018-2020)

199	Networks of High Aspect Ratio Particles to Direct Colloidal Assembly Dynamics and Cellular Interactions. <i>Advanced Functional Materials</i> , 2020 , 30, 2005938	15.6	3
198	Co-Delivery of Timolol and Brimonidine with a Polymer Thin-Film Intraocular Device. <i>Journal of Ocular Pharmacology and Therapeutics</i> , 2019 , 35, 124-131	2.6	5
197	Recent advances in intraocular sustained-release drug delivery devices. <i>Drug Discovery Today</i> , 2019 , 24, 1694-1700	8.8	27
196	Bottom-Up Fabrication of Multilayer Enteric Devices for the Oral Delivery of Peptides. <i>Pharmaceutical Research</i> , 2019 , 36, 89	4.5	18
195	Hang on tight: reprogramming the cell with microstructural cues. <i>Biomedical Microdevices</i> , 2019 , 21, 43	3.7	6
194	Device design methodology and formulation of a protein therapeutic for sustained release intraocular delivery. <i>Bioengineering and Translational Medicine</i> , 2019 , 4, 152-163	14.8	6
193	Supporting Survival of Transplanted Stem-Cell-Derived Insulin-Producing Cells in an Encapsulation Device Augmented with Controlled Release of Amino Acids. <i>Advanced Biology</i> , 2019 , 3, 1900086	3.5	4
192	Human intestinal spheroids cultured using Sacrificial Micromolding as a model system for studying drug transport. <i>Scientific Reports</i> , 2019 , 9, 9936	4.9	10
191	Reversible inhibition of efflux transporters by hydrogel microdevices. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2019 , 145, 76-84	5.7	12
190	Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. <i>Trends in Biotechnology</i> , 2018 , 36, 445-456	15.1	45
189	Influence of the Surfactant Structure on Photoluminescent EConjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding. <i>Langmuir</i> , 2018 , 34, 6125-6137	4	13
188	Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. <i>Biomaterials</i> , 2018 , 169, 11-21	15.6	37
187	Lipid signaling affects primary fibroblast collective migration and anchorage in response to stiffness and microtopography. <i>Journal of Cellular Physiology</i> , 2018 , 233, 3672-3683	7	5
186	Perivascular delivery of resolvin D1 inhibits neointimal hyperplasia in a rabbit vein graft model. Journal of Vascular Surgery, 2018 , 68, 188S-200S.e4	3.5	17
185	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. <i>Cell</i> , 2018 , 174, 505-520	56.2	69
184	Pro-resolving lipid mediators in vascular disease. <i>Journal of Clinical Investigation</i> , 2018 , 128, 3727-3735	15.9	33
183	Porous Silicon in Immunoisolation and Bio-filtration 2018 , 1471-1478		
182	Long-term intraocular pressure reduction with intracameral polycaprolactone glaucoma devices that deliver a novel anti-glaucoma agent. <i>Journal of Controlled Release</i> , 2018 , 269, 45-51	11.7	16

181	Prevascularization of the Subcutaneous Space Improves Survival of Transplanted Mouse Islets. <i>Transplantation</i> , 2018 , 102, S372	1.8	2
180	Islet encapsulation therapy - racing towards the finish line?. <i>Nature Reviews Endocrinology</i> , 2018 , 14, 630	01632	11
179	Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. <i>Cell Stem Cell</i> , 2018 , 22, 810-823	18	125
178	TiO2 Nanotube Arrays as Smart Platforms for Biomedical Applications 2018 , 143-157		6
177	Picoliter-volume inkjet printing into planar microdevice reservoirs for low-waste, high-capacity drug loading. <i>Bioengineering and Translational Medicine</i> , 2017 , 2, 9-16	14.8	20
176	Glucose-Stimulated Insulin Response of Silicon Nanopore-Immunoprotected Islets under Convective Transport. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1051-1061	5.5	2
175	Long acting systemic HIV pre-exposure prophylaxis: an examination of the field. <i>Drug Delivery and Translational Research</i> , 2017 , 7, 805-816	6.2	24
174	Calibrated flux measurements reveal a nanostructure-stimulated transcytotic pathway. <i>Experimental Cell Research</i> , 2017 , 355, 153-161	4.2	8
173	Nanoengineered Stent Surface to Reduce In-Stent Restenosis in Vivo. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 19677-19686	9.5	27
172	Advances in islet encapsulation technologies. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 338-350	64.1	214
171	Nanoporous Immunoprotective Device for Stem-Cell-Derived Ecell Replacement Therapy. <i>ACS Nano</i> , 2017 , 11, 7747-7757	16.7	53
170	Injectable Polymeric Cytokine-Binding Nanowires Are Effective Tissue-Specific Immunomodulators. <i>ACS Nano</i> , 2017 , 11, 11433-11440	16.7	11
169	Nanotemplated Materials for Advanced Drug Delivery Systems 2017 , 289-308		
168	Design and Biological Applications of Nanostructured Poly(Ethylene Glycol) Films 2017 , 531-560		
167	Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. <i>Scientific Reports</i> , 2016 , 6, 23679	4.9	33
166	The 2016 Young Innovators of Cellular and Molecular Bioengineering. <i>Cellular and Molecular Bioengineering</i> , 2016 , 9, 303-304	3.9	
165	A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis. <i>Pharmaceutical Research</i> , 2016 , 33, 1649-56	4.5	68
164	Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery. <i>ACS Nano</i> , 2016 , 10, 5873-81	16.7	47

(2015-2016)

163	Nitinol-Based Nanotubular Arrays with Controlled Diameters Upregulate Human Vascular Cell ECM Production. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 409-414	5.5	19
162	Tunable Microfibers Suppress Fibrotic Encapsulation via Inhibition of TGFIsignaling. <i>Tissue Engineering - Part A</i> , 2016 , 22, 142-50	3.9	4
161	Titanium dioxide nanotube arrays coated with laminin enhance C2C12 skeletal myoblast adhesion and differentiation. <i>RSC Advances</i> , 2016 , 6, 18502-18514	3.7	5
160	Approaching a cure for type 1 diabetes. <i>Nature Medicine</i> , 2016 , 22, 236-7	50.5	3
159	Biocompatibility and Pharmacokinetic Analysis of an Intracameral Polycaprolactone Drug Delivery Implant for Glaucoma 2016 , 57, 4341-6		40
158	Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. <i>Scientific Reports</i> , 2016 , 6, 24726	4.9	142
157	Probing the luminal microenvironment of reconstituted epithelial microtissues. <i>Scientific Reports</i> , 2016 , 6, 33148	4.9	6
156	In vivo and in vitro sustained release of ranibizumab from a nanoporous thin-film device. <i>Drug Delivery and Translational Research</i> , 2016 , 6, 771-780	6.2	17
155	Micro/nanofabricated platforms for oral drug delivery. <i>Journal of Controlled Release</i> , 2015 , 219, 431-44	411.7	67
154	Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices. <i>ACS Nano</i> , 2015 , 9, 567	5 -862 7	58
153	Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. <i>Nano Letters</i> , 2015 , 15, 2434-41	11.5	28
152	Programmed synthesis of three-dimensional tissues. <i>Nature Methods</i> , 2015 , 12, 975-81	21.6	152
151	Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. <i>Materials Science and Engineering C</i> , 2015 , 57, 232-9	8.3	37
150	Interventional magnetic resonance imaging-guided cell transplantation into the brain with radially branched deployment. <i>Molecular Therapy</i> , 2015 , 23, 119-29	11.7	15
149	Formation of spatially and geometrically controlled three-dimensional tissues in soft gels by sacrificial micromolding. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 541-7	2.9	19
148	Micromechanical Cues Converging on Fibroblasts, Cardiac Myocytes, and Stem Cells: Micromechanical Cues Converging on Fibroblasts, Cardiac Myocytes, and Stem Cells 2015 , 1-34		
147	In Vitro and In Vivo Sustained Zero-Order Delivery of Rapamycin (Sirolimus) From a Biodegradable Intraocular Device 2015 , 56, 7331-7		20
146	Intestinal absorption of fluorescently labeled nanoparticles. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2015 , 11, 1169-78	6	14

145	Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery. <i>Therapeutic Delivery</i> , 2015 , 6, 1365-76	3.8	12
144	Fabrication of micropatterned polymeric nanowire arrays for high-resolution reagent localization and topographical cellular control. <i>Nano Letters</i> , 2015 , 15, 1540-6	11.5	18
143	A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2287-92	11.5	71
142	Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction. <i>Biomaterials</i> , 2015 , 46, 26-34	15.6	14
141	Facile Synthesis of Robust Free-Standing TiO Nanotubular Membranes for Biofiltration Applications. <i>Journal of Applied Electrochemistry</i> , 2014 , 44, 411-418	2.6	14
140	In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 567-79	3.9	50
139	Compliant 3D microenvironment improves Etell cluster insulin expression through mechanosensing and Etatenin signaling. <i>Tissue Engineering - Part A</i> , 2014 , 20, 1888-95	3.9	32
138	Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. <i>Materials Science and Engineering C</i> , 2014 , 37, 210-22	8.3	38
137	Porous Silicon in Immunoisolation and Bio-filtration 2014 , 1-8		
136	Novel functionalization of discrete polymeric biomaterial microstructures for applications in imaging and three-dimensional manipulation. <i>ACS Applied Materials & Discrete Section</i> , 14477-85	9.5	10
135	Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction. <i>Biomaterials</i> , 2014 , 35, 8820-8828	15.6	12
134	Nanoparticulate drug delivery platforms for advancing bone infection therapies. <i>Expert Opinion on Drug Delivery</i> , 2014 , 11, 1899-912	8	23
133	Nitinol-based nanotubular coatings for the modulation of human vascular cell function. <i>Nano Letters</i> , 2014 , 14, 5021-8	11.5	36
132	Planar microdevices enhance transport of large molecular weight molecules across retinal pigment epithelial cells. <i>Biomedical Microdevices</i> , 2014 , 16, 629-38	3.7	7
131	Sustained delivery of MGF peptide from microrods attracts stem cells and reduces apoptosis of myocytes. <i>Biomedical Microdevices</i> , 2014 , 16, 705-15	3.7	16
130	Effect of collagen nanotopography on keloid fibroblast proliferation and matrix synthesis: implications for dermal wound healing. <i>Tissue Engineering - Part A</i> , 2014 , 20, 2728-36	3.9	18
129	Advances in calcium phosphate coatingsanodic spark deposition: a review. <i>Frontiers in Bioscience - Landmark</i> , 2014 , 19, 475-89	2.8	3
128	Membranes to achieve immunoprotection of transplanted islets. <i>Frontiers in Bioscience - Landmark</i> , 2014 , 19, 49-76	2.8	56

127	Planar microdevices for enhanced in vivo retention and oral bioavailability of poorly permeable drugs. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1648-54	10.1	49	
126	The effect of nanotopography on modulating protein adsorption and the fibrotic response. <i>Tissue Engineering - Part A</i> , 2014 , 20, 130-8	3.9	36	
125	Planar bioadhesive microdevices: a new technology for oral drug delivery. <i>Current Pharmaceutical Biotechnology</i> , 2014 , 15, 673-83	2.6	16	
124	Porous Silicon in Immunoisolation and Bio-filtration 2014 , 937-944			
123	Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 1416-26	5.4	64	
122	In the spotlight: Tissue engineering. IEEE Reviews in Biomedical Engineering, 2013, 6, 27-8	6.4	1	
121	Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. <i>Nano Letters</i> , 2013 , 13, 164-71	11.5	39	
120	Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction. <i>Biomechanics and Modeling in Mechanobiology</i> , 2013 , 12, 95-109	3.8	10	
119	Nano- and microfabrication for overcoming drug delivery challenges. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1878-1884	7.3	15	
118	Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro. <i>ACS Applied Materials & Description of Action 2013</i> , 5, 2422-31	9.5	62	
117	Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. <i>Journal of Ocular Pharmacology and Therapeutics</i> , 2013 , 29, 249-57	2.6	37	
116	PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium. <i>Biomaterials</i> , 2012 , 33, 1663-72	15.6	50	
115	Collagen fibril diameter and alignment promote the quiescent keratocyte phenotype. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 613-21	5.4	37	
114	Single-injection HPLC method for rapid analysis of a combination drug delivery system. <i>AAPS PharmSciTech</i> , 2012 , 13, 605-10	3.9	4	
113	Size-controlled insulin-secreting cell clusters. <i>Acta Biomaterialia</i> , 2012 , 8, 4278-84	10.8	12	
112	Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices. <i>ACS Nano</i> , 2012 , 6, 7832-41	16.7	45	
111	Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. <i>Small</i> , 2012 , 8, 3839-46	11	45	
110	Emerging microtechnologies for the development of oral drug delivery devices. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 1569-78	18.5	39	

Nanostructured thin film polymer devices for constant-rate protein delivery. Nano Letters, 2012, 12, 5355164 109 Microtechnologies for Drug Delivery 2012, 359-381 108 Differentiation of human embryonic stem cells into pancreatic endoderm in patterned 107 1.6 41 size-controlled clusters. Stem Cell Research, 2011, 6, 276-85 Hemocompatibility of silicon-based substrates for biomedical implant applications. Annals of 106 51 Biomedical Engineering, 2011, 39, 1296-305 Hierarchical nanoengineered surfaces for enhanced cytoadhesion and drug delivery. Biomaterials, 105 15.6 31 2011, 32, 3499-506 Integrin B blockade enhances microtopographical down-regulation of Emooth muscle actin: role 8 3.7 of microtopography in ECM regulation. Integrative Biology (United Kingdom), 2011, 3, 733-41 Microtopographical assembly of cardiomyocytes. Integrative Biology (United Kingdom), 2011, 3, 1011-9 103 3.7 10 In the spotlight: tissue engineering--translation for tissue engineering and regenerative medicine. 6.4 102 IEEE Reviews in Biomedical Engineering, 2011, 4, 24-5 Nanoengineered surfaces enhance drug loading and adhesion. Nano Letters, 2011, 11, 1076-81 28 101 11.5 In the spotlight: tissue engineering. IEEE Reviews in Biomedical Engineering, 2010, 3, 23-4 100 6.4 Patterning of mono- and multilayered pancreatic beta-cell clusters. Langmuir, 2010, 26, 9943-9 99 4 21 Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. 98 64 11.5 Nano Letters, 2010, 10, 143-8 Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: 97 3.9 42 implications for tissue regeneration. Tissue Engineering - Part A, 2010, 16, 2519-27 Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter, 2010, 6, 1621 $\stackrel{4}{\approx}631_{50}$ 96 Biophysical mechanisms of single-cell interactions with microtopographical cues. Biomedical 95 3.7 24 Microdevices, 2010, 12, 287-96 Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. 61 94 3.7 Biomedical Microdevices, 2010, 12, 363-9 Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by 93 3.7 12 microdomain heterogeneity in 3D. Biomedical Microdevices, 2010, 12, 1073-85 Nanotemplating of biodegradable polymer membranes for constant-rate drug delivery. Advanced 92 34 Materials, 2010, 22, 2358-62

(2008-2010)

91	Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells. <i>Small</i> , 2010 , 6, 355-60	11	25
90	Inorganic nanoporous membranes for immunoisolated cell-based drug delivery. <i>Advances in Experimental Medicine and Biology</i> , 2010 , 670, 104-25	3.6	14
89	Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography. <i>Developmental Dynamics</i> , 2009 , 238, 1964-73	2.9	29
88	In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 91, 647-55	5.4	79
87	Microfabricated devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release through a cell monolayer under flow. <i>Small</i> , 2009 , 5, 2857-63	11	55
86	The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. <i>Biomaterials</i> , 2009 , 30, 1268-72	15.6	209
85	In the spotlight: tissue engineeringquantitative analysis of complex 3-D tissues. <i>IEEE Reviews in Biomedical Engineering</i> , 2009 , 2, 21-2	6.4	
84	Long-term small molecule and protein elution from TiO2 nanotubes. <i>Nano Letters</i> , 2009 , 9, 1932-6	11.5	178
83	Biomimetic nanowire coatings for next generation adhesive drug delivery systems. <i>Nano Letters</i> , 2009 , 9, 716-20	11.5	151
82	Inflammatory Response to Implanted Nanostructured Materials 2009 , 355-371		7
82	Inflammatory Response to Implanted Nanostructured Materials 2009 , 355-371 Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44	16.7	7 75
	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards	16.7 7.2	
81	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44 Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally		75
81 80	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44 Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. <i>Lab on A Chip</i> , 2008 , 8, 1042-7 Microfabricated implants for applications in therapeutic delivery, tissue engineering, and	7.2	75 46
81 80 79	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44 Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. <i>Lab on A Chip</i> , 2008 , 8, 1042-7 Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. <i>Lab on A Chip</i> , 2008 , 8, 1864-78	7.2	75 46
81 80 79 78	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44 Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. <i>Lab on A Chip</i> , 2008 , 8, 1042-7 Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. <i>Lab on A Chip</i> , 2008 , 8, 1864-78 In the Spotlight: Tissue and Molecular Engineering. <i>IEEE Reviews in Biomedical Engineering</i> , 2008 , 1, 21-Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. <i>Langmuir</i> ,	7.2 7.2 26.4	75 46 93
81 80 79 78 77	Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. <i>ACS Nano</i> , 2008 , 2, 538-44 Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. <i>Lab on A Chip</i> , 2008 , 8, 1042-7 Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. <i>Lab on A Chip</i> , 2008 , 8, 1864-78 In the Spotlight: Tissue and Molecular Engineering. <i>IEEE Reviews in Biomedical Engineering</i> , 2008 , 1, 21-Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. <i>Langmuir</i> , 2008 , 24, 2631-6	7.2 7.2 2 6.4 4	75 46 93

73	Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. <i>Journal of Ocular Biology, Diseases, and Informatics</i> , 2008 , 1, 19	-29	100
72	Contractility-dependent modulation of cell proliferation and adhesion by microscale topographical cues. <i>Small</i> , 2008 , 4, 1416-24	11	44
71	Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. Journal of Biomechanics, 2008 , 41, 762-9	2.9	45
70	A microfabricated scaffold for retinal progenitor cell grafting. <i>Biomaterials</i> , 2008 , 29, 418-26	15.6	121
69	Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. <i>International Journal of Pharmaceutics</i> , 2008 , 348, 107-14	6.5	54
68	Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. <i>Lab on A Chip</i> , 2007 , 7, 695-701	7.2	114
67	TiO2 Nanotube Arrays of 1000 th Length by Anodization of Titanium Foil: Phenol Red Diffusion. Journal of Physical Chemistry C, 2007 , 111, 14992-14997	3.8	430
66	Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. Journal of Biomedical Materials Research - Part A, 2007 , 80, 955-64	5.4	114
65	Influence of engineered titania nanotubular surfaces on bone cells. <i>Biomaterials</i> , 2007 , 28, 3188-97	15.6	509
64	Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. <i>Biomaterials</i> , 2007 , 28, 4880-8	15.6	476
63	Biocompatibility of nanoporous alumina membranes for immunoisolation. <i>Biomaterials</i> , 2007 , 28, 2638-	- 45 5.6	147
62	Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?. <i>Small</i> , 2007 , 3, 187	8 1 81	284
61	Aligned arrays of biodegradable poly(epsilon-caprolactone) nanowires and nanofibers by template synthesis. <i>Nano Letters</i> , 2007 , 7, 1463-8	11.5	121
60	The effects of cell density and device arrangement on the behavior of macroencapsulated beta-cells. <i>Cell Transplantation</i> , 2007 , 16, 765-74	4	9
59	Nanostructured surfaces for bone biotemplating applications. <i>Journal of Orthopaedic Research</i> , 2006 , 24, 619-27	3.8	52
58	Optical coherence tomography of cell dynamics in three-dimensional tissue models. <i>Optics Express</i> , 2006 , 14, 7159-71	3.3	70
57	Functional MR microimaging of pancreatic beta-cell activation. <i>Cell Transplantation</i> , 2006 , 15, 195-203	4	55
56	Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. <i>Nature Protocols</i> , 2006 , 1, 3153-8	18.8	58

(2004-2006)

55	Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells. <i>Biomaterials</i> , 2006 , 27, 3075-83	15.6	50
54	Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. <i>Biomaterials</i> , 2006 , 27, 4775-82	15.6	152
53	Methods for fabrication of nanoscale topography for tissue engineering scaffolds. <i>Annals of Biomedical Engineering</i> , 2006 , 34, 89-101	4.7	277
52	Drug delivery in the BME curricula. <i>Annals of Biomedical Engineering</i> , 2006 , 34, 270-5	4.7	7
51	Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane-collagen composite tissue scaffold. <i>Tissue Engineering</i> , 2005 , 11, 378-86		59
50	Improving the integrity of three-dimensional vascular patterns by poly(ethylene glycol) conjugation. <i>Bioconjugate Chemistry</i> , 2005 , 16, 18-22	6.3	8
49	Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. <i>Nano Letters</i> , 2005 , 5, 603-7	11.5	120
48	Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. <i>Acta Biomaterialia</i> , 2005 , 1, 93-100	10.8	107
47	Influence of nanoporous alumina membranes on long-term osteoblast response. <i>Biomaterials</i> , 2005 , 26, 4516-22	15.6	132
46	Gastrointestinal patch systems for oral drug delivery. <i>Drug Discovery Today</i> , 2005 , 10, 909-15	8.8	59
45	Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability. Journal of Controlled Release, 2005 , 109, 127-38	11.7	62
44	Microscale multilayer cocultures for biomimetic blood vessels. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 72, 146-60	5.4	78
43	Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 72, 288-95	5.4	100
42	Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. <i>Biomaterials</i> , 2005 , 26, 1969-76	15.6	110
41	Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. <i>Diabetes Technology and Therapeutics</i> , 2005 , 7, 684-94	8.1	55
40	Micromachined biocapsules for cell-based sensing and delivery. <i>Advanced Drug Delivery Reviews</i> , 2004 , 56, 211-29	18.5	87
39	Nanoporous microsystems for islet cell replacement. Advanced Drug Delivery Reviews, 2004, 56, 1661-73	318.5	94
38	Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. <i>Biosensors and Bioelectronics</i> , 2004 , 19, 1037-44	11.8	67

37	Layer-by-layer microfluidics for biomimetic three-dimensional structures. <i>Biomaterials</i> , 2004 , 25, 1355-6	5 4 15.6	164
36	XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. <i>Biosensors and Bioelectronics</i> , 2004 , 20, 227-39	11.8	169
35	Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. <i>Langmuir</i> , 2004 , 20, 348-56	4	162
34	Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). <i>Langmuir</i> , 2004 , 20, 8035-41	4	143
33	A wireless, remote query glucose biosensor based on a pH-sensitive polymer. <i>Analytical Chemistry</i> , 2004 , 76, 4038-43	7.8	109
32	Quantitative XPS Analysis of PEG-Modified Silicon Surfaces. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5185-5188	3.4	52
31	Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography. <i>American Journal of Physiology - Cell Physiology</i> , 2003 , 285, C171-82	5.4	88
30	Microfluidic Patterning of Cellular Biopolymer Matrices. <i>Journal of the Association for Laboratory Automation</i> , 2003 , 8, 40-43		
29	Microfluidic Patterning of Cellular Biopolymer Matrices for Biomimetic 3-D Structures. <i>Biomedical Microdevices</i> , 2003 , 5, 235-244	3.7	45
28	Characterization of PC12 cell proliferation and differentiation-stimulated by ECM adhesion proteins and neurotrophic factors. <i>Journal of Materials Science: Materials in Medicine</i> , 2003 , 14, 1005-9	4.5	39
27	Microfabricated drug delivery systems: from particles to pores. <i>Advanced Drug Delivery Reviews</i> , 2003 , 55, 315-28	18.5	220
26	Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. <i>Journal of Controlled Release</i> , 2003 , 88, 215-28	11.7	101
25	Synthesis of cytoadhesive poly(methylmethacrylate) for applications in targeted drug delivery. Journal of Biomedical Materials Research Part B, 2003 , 67, 369-75		16
24	Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 67, 148-57		71
23	Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. <i>Biomaterials</i> , 2003 , 24, 2463-76	15.6	97
22	Ultrathin poly(ethylene glycol) films for silicon-based microdevices. <i>Applied Surface Science</i> , 2003 , 206, 218-229	6.7	61
21	AFM analysis of organic silane thin films for bioMEMS applications. <i>Surface and Interface Analysis</i> , 2003 , 35, 205-215	1.5	21
20	Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. <i>Tissue Engineering</i> , 2003 , 9, 255-67		133

19	MEMS-Based Technologies for Cellular Encapsulation. American Journal of Drug Delivery, 2003, 1, 3-11		3
18	Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. <i>Journal of Controlled Release</i> , 2002 , 81, 291-306	11.7	114
17	Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices. <i>Surface and Coatings Technology</i> , 2002 , 154, 253-261	4.4	49
16	Immobilization of RGD to silicon surfaces for enhanced cell adhesion and proliferation. <i>Biomaterials</i> , 2002 , 23, 4019-27	15.6	94
15	Characterization of Nanoporous Membranes for Immunoisolation: Diffusion Properties and Tissue Effects. <i>Biomedical Microdevices</i> , 2002 , 4, 131-139	3.7	73
14	Microfabrication technology for pancreatic cell encapsulation. <i>Expert Opinion on Biological Therapy</i> , 2002 , 2, 633-46	5.4	34
13	Controlling Nonspecific Protein Interactions in Silicon Biomicrosystems with Nanostructured Poly(ethylene glycol) Films. <i>Langmuir</i> , 2002 , 18, 8728-8731	4	72
12	Bioadhesive Microdevices for Drug Delivery: A Feasibility Study. <i>Biomedical Microdevices</i> , 2001 , 3, 89-96	3.7	32
11	Evaluation of nanostructured composite collagenchitosan matrices for tissue engineering. <i>Tissue Engineering</i> , 2001 , 7, 203-10		201
10	Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. <i>Journal of Biomedical Materials Research Part B</i> , 2000 , 53, 267-75		120
9	Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. <i>New Biotechnology</i> , 2000 , 17, 23-36		85
8	Nanoporous anti-fouling silicon membranes for biosensor applications. <i>Biosensors and Bioelectronics</i> , 2000 , 15, 453-62	11.8	136
7	Micro- and nanoscale structures for tissue engineering constructs. <i>Medical Engineering and Physics</i> , 2000 , 22, 595-606	2.4	235
6	Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. <i>Journal of Membrane Science</i> , 1999 , 159, 221-231	9.6	127
5	Nanopore Technology for Biomedical Applications. <i>Biomedical Microdevices</i> , 1999 , 2, 11-40	3.7	142
4	Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. <i>Biomedical Microdevices</i> , 1999 , 1, 131-8	3.7	67
3	Microfabricated immunoisolating biocapsules. <i>Biotechnology and Bioengineering</i> , 1998 , 57, 118-20	4.9	144
2	Proteins and cells on PEG immobilized silicon surfaces. <i>Biomaterials</i> , 1998 , 19, 953-60	15.6	361

1

Nanotopography enhances dynamic remodeling of tight junction proteins through cytosolic complexes