
Shigeo Ted Oyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812860/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Correlations in palladium membranes for hydrogen separation: A review. Journal of Membrane Science, 2011, 375, 28-45.	4.1	536
2	Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A: General, 2011, 391, 305-310.	2.2	500
3	The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. Journal of Catalysis, 2008, 258, 393-400.	3.1	248
4	Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. Journal of Catalysis, 2012, 294, 184-198.	3.1	214
5	Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. Journal of Catalysis, 2016, 333, 115-126.	3.1	147
6	Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2. Catalysis Today, 2009, 147, 186-195.	2.2	95
7	Nature of active sites in Ni2P hydrotreating catalysts as probed by iron substitution. Applied Catalysis B: Environmental, 2015, 164, 204-216.	10.8	91
8	EXAFS measurements of a working catalyst in the liquid phase: An in situ study of a Ni2P hydrodesulfurization catalyst. Journal of Catalysis, 2006, 241, 20-24.	3.1	81
9	Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols. Journal of Membrane Science, 2007, 306, 216-227.	4.1	76
10	Kinetics of propylene epoxidation using H2 and O2 over a gold/mesoporous titanosilicate catalyst. Catalysis Today, 2007, 123, 189-197.	2.2	75
11	Unprecedented selectivity to the direct desulfurization (DDS) pathway in a highly active FeNi bimetallic phosphide catalyst. Journal of Catalysis, 2012, 285, 1-5.	3.1	73
12	Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1. Journal of Catalysis, 2011, 280, 40-49.	3.1	60
13	The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass. Bioresource Technology, 2012, 111, 482-490.	4.8	59
14	Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide. Applied Catalysis A: General, 2007, 316, 142-151.	2.2	56
15	Enhanced reactivity of direct propylene epoxidation with H2 and O2 over Ge-modified Au/TS-1 catalysts. Journal of Catalysis, 2009, 267, 202-206.	3.1	55
16	Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1. Journal of Catalysis, 2008, 257, 32-42.	3.1	46
17	Ligand and Ensemble Effects in Bimetallic NiFe Phosphide Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran. Topics in Catalysis, 2012, 55, 969-980.	1.3	44
18	Effects of ball-milling treatment on physicochemical properties and solid base activity of hexagonal boron nitrides. Catalysis Science and Technology, 2019, 9, 302-309.	2.1	42

#	Article	IF	CITATIONS
19	Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin Pd and Pd–Cu membranes for improved conversion and hydrogen yield. Journal of Membrane Science, 2012, 409-410, 222-231.	4.1	36
20	Scanning Tunneling Microscopy and Photoemission Electron Microscopy Studies on Single Crystal Ni ₂ P Surfaces. Journal of Nanoscience and Nanotechnology, 2009, 9, 195-201.	0.9	30
21	Gas-phase radical generation by Ti oxide clusters supported on silica: application to the direct epoxidation of propylene to propylene oxide using molecular oxygen as an oxidant. Catalysis Letters, 2006, 110, 47-51.	1.4	23
22	Design of a high-temperature and high-pressure liquid flow cell for x-ray absorption fine structure measurements under catalytic reaction conditions. Review of Scientific Instruments, 2008, 79, 014101.	0.6	21
23	Platinum‣ike Catalytic Behavior of Au ⁺ . ChemCatChem, 2010, 2, 1582-1586.	1.8	16
24	Operando QEXAFS studies of Ni ₂ P during thiophene hydrodesulfurization: direct observation of Ni—S bond formation under reaction conditions. Journal of Synchrotron Radiation, 2012, 19, 205-209.	1.0	15
25	Infrared spectroscopic studies of the hydrodeoxygenation of Î ³ -valerolactone on Ni2P/MCM-41. Catalysis Today, 2019, 323, 54-61.	2.2	15
26	A New One-Pot Sequential Reduction-Deposition Method for the synthesis of Silica-supported NiPt and CuPt Bimetallic Catalysts. Applied Catalysis A: General, 2020, 591, 117371.	2.2	14
27	The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y ₂ O ₃ Catalysts Using an NO/O ₂ Shuttle. Angewandte Chemie - International Edition, 2020, 59, 16644-16650.	7.2	14
28	Surface-Initiated Gas-Phase Epoxidation of Propylene with Molecular Oxygen by Silica-Supported Molybdenum Oxide: Effects of Addition of C3H8 or NO and Reactor Design. Catalysis Letters, 2008, 121, 33-38.	1.4	13
29	The optimal point within the Robeson upper boundary. Chemical Engineering Research and Design, 2015, 97, 109-119.	2.7	13
30	Combined In Situ XAFS and FTIR Study of the Hydrodeoxygenation Reaction of 2-Methyltetrahydrofuran on Ni ₂ P/SiO ₂ . Journal of Physical Chemistry C, 2019, 123, 7633-7643.	1.5	12
31	Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes. Membranes, 2019, 9, 144.	1.4	12
32	Interplay of Kinetics and Thermodynamics in Catalytic Steam Methane Reforming over Ni/MgO-SiO2. Industrial & Engineering Chemistry Research, 2017, 56, 1148-1158.	1.8	11
33	Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor. Membranes, 2020, 10, 50.	1.4	10
34	The influence of solvent polarity on the dehydrogenation of isoborneol over a Cu/ZnO/Al2O3 catalyst. Catalysis Today, 2019, 323, 44-53.	2.2	9
35	Applicability of the Delplot method for the determination of catalytic reaction sequences: Hydrodeoxygenation of γ-valerolactone on Ni2P/MCM-41. Chemical Engineering Science, 2020, 223, 115697.	1.9	9
36	Simulation study of single-gas permeation of carbon dioxide and methane in hybrid inorganic–organic membrane. Journal of Membrane Science, 2012, 387-388, 30-39.	4.1	8

Shigeo Ted Oyama

#	Article	IF	CITATIONS
37	Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation. Membranes, 2019, 9, 123.	1.4	8
38	Calcium-Modified Ni-SDC Anodes in Solid Oxide Fuel Cells for Direct Dry Reforming of Methane. Journal of the Electrochemical Society, 2020, 167, 134512.	1.3	5
39	Direct electrochemical synthesis of oxygenates from ethane using phosphate-based electrolysis cells. Chemical Communications, 2020, 56, 11199-11202.	2.2	2
40	The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y 2 O 3 Catalysts Using an NO/O 2 Shuttle. Angewandte Chemie, 2020, 132, 16787-16793.	1.6	2