Katja Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812453/publications.pdf

Version: 2024-02-01

85	2,761	30	48
papers	citations	h-index	g-index
100	100	100	2419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs. International Journal of Molecular Sciences, 2022, 23, 873.	4.1	2
2	Spinosad topical suspension (0.9%): a new topical treatment for scabies. Expert Review of Anti-Infective Therapy, 2022, 20, 1149-1154.	4.4	2
3	A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis. PLoS Neglected Tropical Diseases, 2021, 15, e0008997.	3.0	4
4	Molecular diagnosis of scabies using a novel probe-based polymerase chain reaction assay targeting high-copy number repetitive sequences in the Sarcoptes scabiei genome. PLoS Neglected Tropical Diseases, 2021, 15, e0009149.	3.0	7
5	First Description of the Composition and the Functional Capabilities of the Skin Microbial Community Accompanying Severe Scabies Infestation in Humans. Microorganisms, 2021, 9, 907.	3.6	2
6	Scabies itch: an update on neuroimmune interactions and novel targets. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 1765-1776.	2.4	12
7	First evidence of the activity of an entomopathogenic fungus against the eggs of Sarcoptes scabiei. Veterinary Parasitology, 2021, 298, 109553.	1.8	3
8	<i>In vitro</i> ovicidal activity of current and underâ€development scabicides: which treatments kill scabies eggs?. British Journal of Dermatology, 2020, 182, 511-513.	1.5	26
9	How to eliminate scabies parasites from fomites: A high-throughput exÂvivo experimental study. Journal of the American Academy of Dermatology, 2020, 83, 241-245.	1.2	22
10	High-quality nuclear genome for Sarcoptes scabiei—A critical resource for a neglected parasite. PLoS Neglected Tropical Diseases, 2020, 14, e0008720.	3.0	25
11	Proteases and pseudoproteases in parasitic arthropods of clinical importance. FEBS Journal, 2020, 287, 4284-4299.	4.7	9
12	<i>In Vitro</i> Activity of Beauvericin against All Developmental Stages of <i>Sarcoptes scabiei</i> Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
13	Lemongrass (Cymbopogon citratus) oil: A promising miticidal and ovicidal agent against Sarcoptes scabiei. PLoS Neglected Tropical Diseases, 2020, 14, e0008225.	3.0	23
14	The Management of Scabies in the 21st Century: Past, Advances and Potentials. Acta Dermato-Venereologica, 2020, 100, adv00112-234.	1.3	36
15	High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp Scientific Reports, 2019, 9, 11744.	3.3	11
16	The Challenge of Developing a Single-Dose Treatment for Scabies. Trends in Parasitology, 2019, 35, 931-943.	3.3	29
17	Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in <i>Escherichia coli</i> . Preparative Biochemistry and Biotechnology, 2019, 49, 315-327.	1.9	2
18	Isolation and characterization of malaria PfHRP2 specific VNAR antibody fragments from immunized shark phage display library. Malaria Journal, 2018, 17, 383.	2.3	26

#	Article	IF	Citations
19	Kunitz type protease inhibitor EgKI-1 from the canine tapeworm Echinococcus granulosus as a promising therapeutic against breast cancer. PLoS ONE, 2018, 13, e0200433.	2.5	17
20	The Development of Single Domain Antibodies for Diagnostic and Therapeutic Applications. , 2018, , .		3
21	Efficacy and Pharmacokinetics Evaluation of a Single Oral Dose of Afoxolaner against Sarcoptesscabiei in the Porcine Scabies Model for Human Infestation. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	26
22	Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei. Parasites and Vectors, 2018, 11, 301.	2.5	9
23	Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. Parasites and Vectors, 2017, 10, 289.	2.5	22
24	Single Domain Antibodies as New Biomarker Detectors. Diagnostics, 2017, 7, 52.	2.6	29
25	Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Neglected Tropical Diseases, 2017, 11, e0005437.	3.0	40
26	Preclinical Study of Single-Dose Moxidectin, a New Oral Treatment for Scabies: Efficacy, Safety, and Pharmacokinetics Compared to Two-Dose Ivermectin in a Porcine Model. PLoS Neglected Tropical Diseases, 2016, 10, e0005030.	3.0	68
27	Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis. GigaScience, 2016, 5, 23.	6.4	28
28	Mitochondrial Genome Sequence of the Scabies Mite Provides Insight into the Genetic Diversity of Individual Scabies Infections. PLoS Neglected Tropical Diseases, 2016, 10, e0004384.	3.0	30
29	A novel coagulation inhibitor from <i>Schistosoma japonicum</i> . Parasitology, 2015, 142, 1663-1672.	1.5	19
30	Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasites and Vectors, 2015, 8, 408.	2.5	52
31	Pseudoproteases: mechanisms and function. Biochemical Journal, 2015, 468, 17-24.	3.7	31
32	Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus. PLoS Neglected Tropical Diseases, 2015, 9, e0004268.	3.0	34
33	Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunology, 2014, 36, 585-593.	1.5	46
34	Scabies Mite Inactive Serine Proteases Are Potent Inhibitors of the Human Complement Lectin Pathway. PLoS Neglected Tropical Diseases, 2014, 8, e2872.	3.0	50
35	Scabies Mites Alter the Skin Microbiome and Promote Growth of Opportunistic Pathogens in a Porcine Model. PLoS Neglected Tropical Diseases, 2014, 8, e2897.	3.0	67
36	A Scabies Mite Serpin Interferes with Complement-Mediated Neutrophil Functions and Promotes Staphylococcal Growth. PLoS Neglected Tropical Diseases, 2014, 8, e2928.	3.0	51

#	Article	IF	CITATIONS
37	Parasitic mites of medical and veterinary importance – is there a common research agenda?. International Journal for Parasitology, 2014, 44, 955-967.	3.1	38
38	Autoantibodies to iron-binding proteins in pigs infested with Sarcoptes scabiei. Veterinary Parasitology, 2014, 205, 263-270.	1.8	8
39	Intestinal proteases of free-living and parasitic astigmatid mites. Cell and Tissue Research, 2013, 351, 339-352.	2.9	19
40	An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules. PLoS Neglected Tropical Diseases, 2013, 7, e2525.	3.0	26
41	Novel insights into an old disease. Current Opinion in Infectious Diseases, 2013, 26, 110-115.	3.1	18
42	Complement Inhibitors from Scabies Mites Promote Streptococcal Growth – A Novel Mechanism in Infected Epidermis?. PLoS Neglected Tropical Diseases, 2012, 6, e1563.	3.0	52
43	Scabies. Advances in Parasitology, 2012, 79, 339-373.	3.2	27
44	Malaria infection alters the expression of <scp>B</scp> â€cell activating factor resulting in diminished memory antibody responses and survival. European Journal of Immunology, 2012, 42, 3291-3301.	2.9	38
45	Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System. PLoS ONE, 2012, 7, e40489.	2.5	62
46	Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasites and Vectors, 2012, 5, 3.	2.5	32
47	Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity. PLoS Neglected Tropical Diseases, 2011, 5, e1331.	3.0	36
48	A Tractable Experimental Model for Study of Human and Animal Scabies. PLoS Neglected Tropical Diseases, 2010, 4, e756.	3.0	71
49	Scabies Mite Inactivated Serine Protease Paralogs Inhibit the Human Complement System. Journal of Immunology, 2009, 182, 7809-7817.	0.8	89
50	Characterization of a Serine Protease Homologous to House Dust Mite Group 3 Allergens from the Scabies Mite Sarcoptes scabiei. Journal of Biological Chemistry, 2009, 284, 34413-34422.	3.4	46
51	Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues. Journal of Molecular Biology, 2009, 390, 635-645.	4.2	33
52	Complement evasion of the scabies mite Sarcoptes scabiei. Molecular Immunology, 2009, 46, 2849.	2,2	1
53	Scabies and bacterial skin infections at a molecular level. Microbiology Australia, 2009, 30, 177.	0.4	0
54	Scabies mite inactivated protease paralogues inhibit human complement. Molecular Immunology, 2008, 45, 4171-4172.	2.2	0

#	Article	IF	CITATIONS
55	Scabies mite inactivated protease paralogues. International Congress Series, 2006, 1289, 85-88.	0.2	1
56	The chitinase allergens Der p 15 and Der p 18 from <i>Dermatophagoides pteronyssinus</i> . Clinical and Experimental Allergy, 2006, 36, 831-839.	2.9	55
57	PCR-BASED ASSAY TO SURVEY FOR KNOCKDOWN RESISTANCE TO PYRETHROID ACARICIDES IN HUMAN SCABIES MITES (SARCOPTES SCABIEI VAR HOMINIS). American Journal of Tropical Medicine and Hygiene, 2006, 74, 649-657.	1.4	46
58	SCABIES MITE INACTIVATED SERINE PROTEASE PARALOGUES ARE PRESENT BOTH INTERNALLY IN THE MITE GUT AND EXTERNALLY IN FECES. American Journal of Tropical Medicine and Hygiene, 2006, 75, 683-687.	1.4	30
59	PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). American Journal of Tropical Medicine and Hygiene, 2006, 74, 649-57.	1.4	16
60	Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces. American Journal of Tropical Medicine and Hygiene, 2006, 75, 683-7.	1.4	17
61	Analysis of Sarcoptes scabiei finds no evidence of infection with Wolbachia. International Journal for Parasitology, 2005, 35, 131-135.	3.1	12
62	IDENTIFICATION AND CHARACTERIZATION OF SARCOPTES SCABIEI AND DERMATOPHAGOIDES PTERONYSSINUS GLUTATHIONE S-TRANSFERASES: IMPLICATION AS A POTENTIAL MAJOR ALLERGEN IN CRUSTED SCABIES. American Journal of Tropical Medicine and Hygiene, 2005, 73, 977-984.	1.4	48
63	Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases: implication as a potential major allergen in crusted scabies. American Journal of Tropical Medicine and Hygiene, 2005, 73, 977-84.	1.4	20
64	Sulfadoxine Resistance in Plasmodium vivax Is Associated with a Specific Amino Acid in Dihydropteroate Synthase at the Putative Sulfadoxine-Binding Site. Antimicrobial Agents and Chemotherapy, 2004, 48, 2214-2222.	3.2	100
65	A Multigene Family of Inactivated Cysteine Proteases in Sarcoptes scabiei. Journal of Investigative Dermatology, 2004, 123, 240-241.	0.7	54
66	A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer's clefts. Molecular and Biochemical Parasitology, 2004, 136, 181-189.	1.1	81
67	Ten families of variant genes encoded in subtelomeric regions of multiple chromosomes of Plasmodium chabaudi, a malaria species that undergoes antigenic variation in the laboratory mouse. Molecular Microbiology, 2003, 48, 1209-1223.	2.5	33
68	Mechanisms for a Novel Immune Evasion Strategy in the Scabies Mite Sarcoptes Scabiei: A Multigene Family of Inactivated Serine Proteases. Journal of Investigative Dermatology, 2003, 121, 1419-1424.	0.7	87
69	Normalization of a cDNA Library Cloned in λZAP by a Long PCR and cDNA Reassociation Procedure. BioTechniques, 2003, 34, 250-254.	1.8	22
70	GENERATION AND CHARACTERIZATION OF CDNA CLONES FROM SARCOPTES SCABIEI VAR. HOMINIS FOR AN EXPRESSED SEQUENCE TAG LIBRARY: IDENTIFICATION OF HOMOLOGUES OF HOUSE DUST MITE ALLERGENS. American Journal of Tropical Medicine and Hygiene, 2003, 68, 61-64.	1.4	72
71	Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. American Journal of Tropical Medicine and Hygiene, 2003, 68, 61-4.	1.4	28
72	Characterization of microsatellite loci in Anopheles flavirostris, the principal malaria vector in the Philippines. Molecular Ecology Notes, 2002, 2, 527-528.	1.7	0

#	Article	IF	CITATIONS
73	Primary Structure of the Plasmodium vivax crk2 Gene and Interference of the Yeast Cell Cycle upon Its Conditional Expression. Experimental Parasitology, 2001, 97, 119-128.	1.2	5
74	Aldolase genes of Plasmodium species. Molecular and Biochemical Parasitology, 2001, 113, 327-330.	1.1	11
75	Prediction of many new exons and introns in Plasmodium falciparum chromosome 2. Molecular and Biochemical Parasitology, 2001, 118, 187-199.	1.1	15
76	Clags in Plasmodium falciparum and other species of Plasmodium. Molecular and Biochemical Parasitology, 2001, 118, 259-263.	1.1	9
77	The sequence of a 200 kb portion of a Plasmodium vivax chromosome reveals a high degree of conservation with Plasmodium falciparum chromosome 3. Molecular and Biochemical Parasitology, 2001, 118, 211-222.	1.1	27
78	Characterization and cloning of the gene encoding the vacuolar membrane protein EXP-2 from Plasmodium falciparum1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDJB databases under the accession number AJ000652.1. Molecular and Biochemical Parasitology, 1998, 92, 47-57.	1.1	30
79	stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Molecular and Biochemical Parasitology, 1998, 97, 161-176.	1.1	230
80	Expression of <i>var</i> Genes Located within Polymorphic Subtelomeric Domains of <i>Plasmodium falciparum</i> Chromosomes. Molecular and Cellular Biology, 1997, 17, 3679-3686.	2.3	63
81	Construction and Characterization of aPlasmodium vivaxGenomic Library in Yeast Artificial Chromosomes. Genomics, 1997, 42, 467-473.	2.9	26
82	A method to measure the cytoplasmic pH of single, living Plasmodium falciparum parasites. Behring Institute Mitteilungen, 1997, , 44-50.	0.2	2
83	Current status of the Plasmodium falciparum genome project. Molecular and Biochemical Parasitology, 1996, 79, 1-12.	1.1	55
84	Construction and rapid screening of a representative yeast artificial chromosome library from the Plasmodium falciparum strain Dd2. Parasitology Research, 1996, 83, 87-89.	1.6	7
85	Parasitism and chromosome dynamics in protozoan parasites: is there a connection?. Molecular and Biochemical Parasitology, 1995, 70, 1-8.	1.1	78