Andrzej C C Skladanowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812345/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	MET-Pyk2 Axis Mediates Acquired Resistance to FGFR Inhibition in Cancer Cells. Frontiers in Oncology, 2021, 11, 633410.	2.8	7
2	FGFR2-Driven Signaling Counteracts Tamoxifen Effect on ERα-Positive Breast Cancer Cells. Neoplasia, 2017, 19, 791-804.	5.3	40
3	Progesterone impairs Herceptin effect on breast cancer cells. Oncology Letters, 2017, 15, 1817-1822.	1.8	1
4	Tetraspanin CD151 mediates communication between prostate cancer cells and osteoblasts. Acta Biochimica Polonica, 2017, 64, 135-141.	0.5	6
5	Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget, 2016, 7, 86011-86025.	1.8	18
6	Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration. PLoS ONE, 2016, 11, e0151420.	2.5	47
7	Interactions between FGFR2 and RSK2—implications for breast cancer prognosis. Tumor Biology, 2016, 37, 13721-13731.	1.8	11
8	CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. International Journal of Biochemistry and Cell Biology, 2015, 69, 1-10.	2.8	30
9	Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro, but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncology Reports, 2014, 31, 819-827.	2.6	30
10	Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2461-2470.	4.1	20
11	Dual, enzymatic and non-enzymatic, function of ecto-5'-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochimica Polonica, 2012, 59, 647-52.	0.5	38
12	Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis. Toxicology and Applied Pharmacology, 2011, 251, 163-168.	2.8	23
13	Mechanism of cytotoxic action of perfluorinated acids Toxicology and Applied Pharmacology, 2009, 234, 300-305.	2.8	47
14	Mechanism of cytotoxic action of perfluorinated acids. Toxicology and Applied Pharmacology, 2009, 235, 182-190.	2.8	45
15	Tenascin C interacts with Ecto-5′-nucleotidase (eN) and regulates adenosine generation in cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 35-40.	3.8	37
16	Simplex-optimized Chromatographic Resolution of Selected Ionic Liquid Cations Utilizing a Polar Reversed-Phase System. Analytical Sciences, 2008, 24, 1355-1358.	1.6	6
17	Analysis of structure–cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicology in Vitro, 2007, 21, 1206-1211.	2.4	78
18	Evaluation of the acute toxicity of perfluorinated carboxylic acids using eukaryotic cell lines, bacteria and enzymatic assays. Environmental Toxicology and Pharmacology, 2007, 23, 279-285.	4.0	77

#	Article	IF	CITATIONS
19	Ecto-5′-Nucleotidase (eN, CD73) is Coexpressed with Metastasis Promoting Antigens in Human Melanoma Cells. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 1119-1123.	1.1	36
20	Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Research, 2006, 16, 213-222.	1.2	98
21	AMP deaminase in vitro inhibition by xenobiotics. Environmental Toxicology and Pharmacology, 2005, 19, 291-296.	4.0	69
22	Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Human and Experimental Toxicology, 2004, 23, 513-517.	2.2	236
23	Distinct Roles for Recombinant Cytosolic 5′-Nucleotidase-I and -II in AMP and IMP Catabolism in COS-7 and H9c2 Rat Myoblast Cell Lines. Journal of Biological Chemistry, 2000, 275, 11666-11671.	3.4	41
24	The Cytotoxic Effect of Purine Riboside on COS-7 Cells. , 2000, 486, 355-359.		4
25	The Mechanism of Adenosine Formation in Cells. Journal of Biological Chemistry, 1999, 274, 17789-17793.	3.4	74
26	Activity of IMP- and AMP-Preferring Isoforms of 5′-Nucleotidase from Human Seminal Plasma with AMP Analogues. Molecular Genetics and Metabolism, 1999, 66, 49-55.	1.1	0
27	Structure-activity relationship of cytoplasmic 5′-nucleotidase substrate sites. Biochemical Journal, 1996, 314, 1001-1007.	3.7	13
28	Kinetics of adenylate metabolism in human and rat myocardium. Biochimica Et Biophysica Acta - General Subjects, 1995, 1244, 351-356.	2.4	11
29	Adenylate degradation products release from the human myocardium during open heart surgery. Clinica Chimica Acta, 1989, 182, 63-73.	1.1	29
30	Determination of AMP in the rat heart using skeletal muscle AMP deaminase. Analytical Biochemistry, 1986, 154, 578-582.	2.4	0
31	Modification of the catalytic and regulatory properties of beef heart AMP-deaminase by DTNB treatment. International Journal of Biochemistry & Cell Biology, 1985, 17, 139-142.	0.5	1
32	Regulatory properties of 14 day embryo and adult hen heart amp-deaminase. International Journal of Biochemistry & Cell Biology, 1984, 16, 75-81.	0.5	10
33	Hydro- and thermodynamic properties of bovine heart AMP-deaminase. International Journal of Biochemistry & Cell Biology, 1981, 13, 865-869.	0.5	9
34	Effect of temperature on the activity of AMP deaminase from chicken heart and skeletal muscle at different stages of development. Experientia, 1981, 37, 232-234.	1.2	9
35	Potassium-dependent regulation by ATP and ADP of AMP-deaminase from beef heart. International Journal of Biochemistry & Cell Biology, 1979, 10, 177-181.	0.5	10
36	Purification and some regulatory properties of human heart adenylate deaminase. International Journal of Biochemistry & Cell Biology, 1979, 10, 925-929.	0.5	23

#	Article	IF	CITATIONS
37	Effect of temperature on the activity of AMP-deaminase from rat heart. Experientia, 1979, 35, 728-729.	1.2	4
38	Regulatory properties of rat heart AMP deaminase. Biochimica Et Biophysica Acta - Biomembranes, 1979, 568, 80-90.	2.6	32
39	Comparative studies on muscle AMP-deaminase—I purification, molecular weight, subunit structure and metal content of the enzymes from rat, rabbit, hen, frog and pikeperch. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1979, 62, 363-369.	0.2	4
40	Temperature- and ph-induced changes of the enzyme-substrate affinity and the reaction velocity catalysed by rabbit skeletal muscle amp-deaminase. International Journal of Biochemistry & Cell Biology, 1978, 9, 97-101.	0.5	5
41	Inhibition of amp-deaminase from beef heart by palmitoyl and stearyl-CoA. International Journal of Biochemistry & Cell Biology, 1978, 9, 43-45.	0.5	10