Lingxia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812334/publications.pdf

Version: 2024-02-01

		623734	642732
35	599	14	23
papers	citations	h-index	23 g-index
25	25	25	F22
35	35	35	523
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Scientific Reports, 2016, 6, 20399.	3.3	75
2	Characterization of SnO2/Cu/SnO2 multilayers for high performance transparent conducting electrodes. Thin Solid Films, 2014, 562, 501-505.	1.8	52
3	Ultra-high energy density thin-film capacitors with high power density using BaSn0.15Ti0.85O3/Ba0.6Sr0.4TiO3 heterostructure thin films. Journal of Power Sources, 2019, 412, 648-654.	7.8	44
4	Improved performance of transparent-conducting AZO/Cu/AZO multilayer thin films by inserting a metal Ti layer for flexible electronics. Optics Letters, 2017, 42, 3020.	3.3	36
5	Characteristics of Transparent Conducting Wâ€Doped SnO ₂ Thin Films Prepared by Using the Magnetron Sputtering Method. Journal of the American Ceramic Society, 2015, 98, 1121-1127.	3.8	34
6	Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications. Ceramics International, 2021, 47, 20379-20386.	4.8	31
7	BMN-based transparent capacitors with high dielectric tunability. Journal of Alloys and Compounds, 2017, 699, 68-72.	5 . 5	27
8	Structural, electrical, photoluminescence and optical properties of n–type conducting, phosphorus-doped ZnO thin films prepared by pulsed laser deposition. Applied Surface Science, 2014, 298, 44-49.	6.1	24
9	Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110885.	6.2	23
10	Electrical properties of bulk and interface layers in Sb doped SnO2 thin films. Ceramics International, 2019, 45, 2201-2206.	4.8	21
11	Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications. Scientific Reports, 2015, 5, 10173.	3.3	18
12	Investigation on Tunable Performance of <scp>BMN</scp> / <scp>BST</scp> Multilayer and <scp>BMN</scp> â€" <scp>BST</scp> Composite Thin Films. Journal of the American Ceramic Society, 2015, 98, 819-823.	3.8	18
13	Bi1.5Mg1.0Nb1.5O7/Ba0.6Sr0.4TiO3 bilayer thin films prepared by pulsed laser deposition. Journal of Alloys and Compounds, 2014, 612, 26-29.	5.5	15
14	Effect of oxygen pressure on preferential orientation, microstructure and functional properties of Bi1.5MgNb1.5O7 thin films prepared by pulsed laser deposition. Applied Surface Science, 2015, 353, 48-53.	6.1	15
15	Enhanced conductivity and stability of Cu-embedded zinc tin oxide flexible transparent conductive thin films. Ceramics International, 2022, 48, 15925-15931.	4.8	14
16	Investigation on preparation and electric field tunable dielectric properties of novel bismuth magnesium niobate transparent capacitors for opto-electronic devices. Journal of Materials Chemistry C, 2014, 2, 9683-9688.	5.5	13
17	Fabrication and characterization of electric field tunable Bi1.5MgNb1.5O7 transparent capacitors. Materials Letters, 2014, 116, 50-52.	2.6	13
18	Low loss, high tunable BaZr0.2Ti0.8O3/BaSn0.85Ti0.15O3 heterostructure thin films. Applied Physics Letters, 2016, 109, .	3.3	13

#	Article	IF	Citations
19	Effects of substrate temperature on the dielectric properties of Bi1.5MgNb1.5O7 thin films derived from pulsed laser deposition. Materials Chemistry and Physics, 2014, 148, 426-430.	4.0	12
20	Ultra-high energy storage density and ultra-wide operating temperature range in Bi2Zn2/3Nb4/3O7 thin film as a novel lead-free capacitor. Journal of Power Sources, 2021, 497, 229879.	7.8	12
21	Effects of substrate on the crystalline structure and microwave dielectric properties of Bi1.5Mg1.0Nb1.5O7 sol–gel thin films. Journal of Alloys and Compounds, 2015, 622, 79-85.	5.5	11
22	Structure and voltage tunable dielectric properties of sol–gel derived Bi1.5MgNb1.5O7 thin films. Journal of Sol-Gel Science and Technology, 2012, 63, 395-399.	2.4	10
23	Energy storage and dielectric properties of a novel Bi1.5MgNb1.5O7-Bi2Mg2/3Nb4/3O7 thin film. Ceramics International, 2021, 47, 1238-1243.	4.8	10
24	Thickness dependence of microstructure, dielectric and leakage properties of BaSn0.15Ti0.85O3 thin films. Ceramics International, 2018, 44, 11466-11471.	4.8	8
25	Highly reliable flexible transparent conductors prepared with Cu/Ni grid by vacuum-free solution process. Optical Materials, 2021, 120, 111427.	3.6	7
26	Effect of substrate on the dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering. Vacuum, 2014, 109, 21-25.	3.5	6
27	Tunable performance of BaZr0.2Ti0.8O3 thin films prepared by pulsed laser deposition. Ceramics International, 2017, 43, 13154-13158.	4.8	6
28	High tunability in $(1\ 1\ 0)$ -oriented BaZr0.2Ti0.8O3 (BTZ) lead-free thin films fabricated by pulsed laser deposition. Ceramics International, 2018, 44, 3005-3008.	4.8	6
29	High-performance flexible dielectric tunable BTS thin films prepared on copper foils. Ceramics International, 2019, 45, 16270-16274.	4.8	6
30	(1 1 0)–textured BaSn0.15Ti0.85O3/Ba0.6Sr0.4TiO3/BaZr0.2Ti0.8O3 multilayers with enhanced tunable performance. Journal of Alloys and Compounds, 2019, 781, 689-695.	5 . 5	6
31	Enhanced dielectric tunable performance of Bi1.5Zn1.0Nb1.5O7/BaTi0.85Sn0.15O3 heterolayer thin films. Ceramics International, 2019, 45, 6509-6513.	4.8	4
32	Effect of deposition pressure on the dielectric properties of bismuth magnesium niobium titanium thin films prepared by RF magnetron sputtering. Ceramics International, 2015, 41, 813-817.	4.8	3
33	Effect of oxygen pressure performance of PZO thin films deposited by pulsed laser deposition at low temperature. Journal of Alloys and Compounds, 2017, 727, 1273-1279.	5. 5	3
34	High-performance indium-free flexible transparent ATO/Au/ATO tri-layer films by magnetron sputtering. Ceramics International, 2021, , .	4.8	2
35	Effect of rf power on the dielectric properties of bismuth magnesium niobium titanium thin films deposited by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2015, 26, 2053-2058.	2.2	1