
Zohreh Hosseinzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8812189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decreased Na+/K+ ATPase Expression and Depolarized Cell Membrane in Neurons Differentiated from Chorea-Acanthocytosis Patients. Scientific Reports, 2020, 10, 8391.	1.6	9
2	A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials, 2019, 225, 119537.	5.7	24
3	FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathologica, 2019, 138, 67-84.	3.9	94
4	Inhibition of Lithium Sensitive Orai1/ STIM1 Expression and Store Operated Ca2+ Entry in Chorea-Acanthocytosis Neurons by NF-κB Inhibitor Wogonin. Cellular Physiology and Biochemistry, 2018, 51, 278-289.	1.1	9
5	Spike-triggered average electrical stimuli as input filters for bionic vision—a perspective. Journal of Neural Engineering, 2018, 15, 063002.	1.8	19
6	Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na+/K+ ATPase Activity in Dendritic Cells. Scientific Reports, 2017, 7, 41117.	1.6	5
7	Trifluoperazine-Induced Suicidal Erythrocyte Death and S-Nitrosylation Inhibition, Reversed by the Nitric Oxide Donor Sodium Nitroprusside. Cellular Physiology and Biochemistry, 2017, 42, 1985-1998.	1.1	18
8	P38 Kinase, SGK1 and NF-κB Dependent Up-Regulation of Na+/Ca2+ Exchanger Expression and Activity Following TGFß1 Treatment of Megakaryocytes. Cellular Physiology and Biochemistry, 2017, 42, 2169-2181.	1.1	6
9	Role of Na+/Ca2+ Exchangers in Therapy Resistance of Medulloblastoma Cells. Cellular Physiology and Biochemistry, 2017, 42, 1240-1251.	1.1	10
10	Up-Regulation of Na+/Ca2+ Exchange in Megakaryocytes Following TGFβ1 Treatment. Cellular Physiology and Biochemistry, 2016, 39, 693-699.	1.1	6
11	Expression of JAK3 Sensitive Na+ Coupled Glucose Carrier SGLT1 in Activated Cytotoxic T Lymphocytes. Cellular Physiology and Biochemistry, 2016, 39, 1209-1228.	1.1	13
12	Up-Regulation of the Large-Conductance Ca2+-Activated K+ Channel by Glycogen Synthase Kinase GSK3β. Cellular Physiology and Biochemistry, 2016, 39, 1031-1039.	1.1	5
13	Activation of SGK1 in Endometrial Epithelial Cells in Response to PI3K/AKT Inhibition Impairs Embryo Implantation. Cellular Physiology and Biochemistry, 2016, 39, 2077-2087.	1.1	35
14	LEFTYA Activates the Epithelial Na+ Channel (ENaC) in Endometrial Cells via Serum and Glucocorticoid Inducible Kinase SGK1. Cellular Physiology and Biochemistry, 2016, 39, 1295-1306.	1.1	17
15	Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate. Scientific Reports, 2016, 6, 28754.	1.6	33
16	Down-Regulation of Store-Operated Ca2+ Entry and Na+ Ca2+ Exchange in MCF-7 Breast Cancer Cells by Pharmacological JAK3 Inhibition. Cellular Physiology and Biochemistry, 2016, 38, 1643-1651.	1.1	11
17	Decrease of Store-Operated Ca2+ Entry and Increase of Na+/Ca2+ Exchange by Pharmacological JAK2 Inhibition. Cellular Physiology and Biochemistry, 2016, 38, 683-695.	1.1	11
18	SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5). Cellular Physiology and Biochemistry, 2016, 38, 359-367.	1.1	6

ZOHREH HOSSEINZADEH

#	Article	IF	CITATIONS
19	SPAK Sensitive Regulation of the Epithelial Na ⁺ Channel ENaC. Kidney and Blood Pressure Research, 2015, 40, 335-343.	0.9	17
20	Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1. Kidney and Blood Pressure Research, 2015, 40, 555-564.	0.9	12
21	SPAK and OSR1 Sensitive Kir2.1 K ⁺ Channels. NeuroSignals, 2015, 23, 20-33.	0.5	10
22	Impact of Na+/Ca2+ Exchangers on Therapy Resistance of Ovary Carcinoma Cells. Cellular Physiology and Biochemistry, 2015, 37, 1857-1868.	1.1	16
23	USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2. PLoS ONE, 2015, 10, e0129365.	1.1	7
24	Up-regulation of epithelial Na+ channel ENaC by human parvovirus B19 capsid protein VP1. Biochemical and Biophysical Research Communications, 2015, 468, 179-184.	1.0	4
25	The Role of Janus Kinase 3 in the Regulation of Na+/K+ ATPase under Energy Depletion. Cellular Physiology and Biochemistry, 2015, 36, 727-740.	1.1	22
26	Impact of Janus Kinase 3 on Cellular Ca2+ Release, Store Operated Ca2+ Entry and Na+/Ca2+ Exchanger Activity in Dendritic Cells. Cellular Physiology and Biochemistry, 2015, 36, 2287-2298.	1.1	12
27	Regulation of Large Conductance Voltage-and Ca2+-Activated K+ Channels by the Janus Kinase JAK3. Cellular Physiology and Biochemistry, 2015, 37, 297-305.	1.1	14
28	Janus kinase 3 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression, calcitriol formation, and phosphate metabolism. Kidney International, 2015, 87, 728-737.	2.6	22
29	Up-regulation of Kv1.3 Channels by Janus Kinase 2. Journal of Membrane Biology, 2015, 248, 309-317.	1.0	3
30	Up-regulation of megakaryocytic Na+/Ca2+ exchange in klotho-deficient mice. Biochemical and Biophysical Research Communications, 2015, 460, 177-182.	1.0	3
31	Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3. Journal of Membrane Biology, 2015, 248, 1061-1070.	1.0	7
32	Up-Regulation of hERG K+ Channels by B-RAF. PLoS ONE, 2014, 9, e87457.	1.1	8
33	Energy-sensitive regulation of Na ⁺ /K ⁺ -ATPase by Janus kinase 2. American Journal of Physiology - Cell Physiology, 2014, 306, C374-C384.	2.1	23
34	Upregulation of the large conductance voltage- and Ca ²⁺ -activated K ⁺ channels by Janus kinase 2. American Journal of Physiology - Cell Physiology, 2014, 306, C1041-C1049.	2.1	6
35	Regulation of CIC-2 Activity by SPAK and OSR1. Kidney and Blood Pressure Research, 2014, 39, 378-387.	0.9	26
36	Regulation of the Voltage Gated K+Channel Kv1.3by Recombinant Human Klotho Protein. Kidney and Blood Pressure Research, 2014, 39, 609-622.	0.9	5,235

ZOHREH HOSSEINZADEH

#	Article	IF	CITATIONS
37	SPAK Dependent Regulation of Peptide Transporters PEPT1 and PEPT2. Kidney and Blood Pressure Research, 2014, 39, 388-398.	0.9	26
38	Downregulation of Peptide Transporters PEPT1 and PEPT2 by Oxidative Stress Responsive Kinase OSR1. Kidney and Blood Pressure Research, 2014, 39, 591-599.	0.9	25
39	Down-Regulation of the Epithelial Na+ Channel ENaC by Janus kinase 2. Journal of Membrane Biology, 2014, 247, 331-338.	1.0	19
40	Upregulation of the Na+-Coupled Phosphate Cotransporters NaPi-IIa and NaPi-IIb by B-RAF. Journal of Membrane Biology, 2014, 247, 137-145.	1.0	11
41	Downregulation of Chloride Channel ClC-2 by Janus Kinase 3. Journal of Membrane Biology, 2014, 247, 387-393.	1.0	12
42	Upregulation of Excitatory Amino Acid Transporters by Coexpression of Janus Kinase 3. Journal of Membrane Biology, 2014, 247, 713-720.	1.0	4
43	Effect of TGFÎ ² on Na+/K+ ATPase activity in megakaryocytes. Biochemical and Biophysical Research Communications, 2014, 452, 537-541.	1.0	5
44	Downregulation of KCNQ4 by Janus Kinase 2. Journal of Membrane Biology, 2013, 246, 335-341.	1.0	21
45	Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2. Journal of Membrane Biology, 2013, 246, 885-892.	1.0	22
46	Stimulation of Na+ coupled phosphate transporter NaPilla by janus kinase JAK2. Biochemical and Biophysical Research Communications, 2013, 431, 186-191.	1.0	3
47	Down-Regulation of the Na ⁺ -Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase. Kidney and Blood Pressure Research, 2013, 37, 547-556.	0.9	30
48	Upregulation of Na ⁺ ,Cl ⁻ -Coupled Betaine/ γ-Amino-Butyric Acid Transporter BGT1 by Tau Tubulin Kinase 2. Cellular Physiology and Biochemistry, 2013, 32, 334-343.	1.1	43
49	Intestinal Na+Loss and Volume Depletion in JAK3-Deficient Mice. Kidney and Blood Pressure Research, 2013, 37, 514-520.	0.9	15
50	Annexin 7 in the Regulation of Gastric Acid Secretion. Cellular Physiology and Biochemistry, 2013, 32, 1643-1654.	1.1	8
51	Upregulation of Peptide Transporters PEPT1 and PEPT2 by Janus Kinase JAK2. Cellular Physiology and Biochemistry, 2013, 31, 673-682.	1.1	43
52	AMPKα1-Sensitivity of Orai1 and Ca ²⁺ Entry in T - Lymphocytes. Cellular Physiology and Biochemistry, 2013, 32, 687-698.	1.1	35
53	Down-Regulation of the Myoinositol Transporter SMIT by JAK2. Cellular Physiology and Biochemistry, 2012, 30, 1473-1480.	1.1	18
54	Stimulation of the Na+-coupled glucose transporter SGLT1 by B-RAF. Biochemical and Biophysical Research Communications, 2012, 427, 689-693.	1.0	8

#	Article	IF	CITATIONS
55	Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochemical and Biophysical Research Communications, 2012, 420, 172-177.	1.0	12
56	Downregulation of ClC-2 by JAK2. Cellular Physiology and Biochemistry, 2012, 29, 737-742.	1.1	34
57	Downregulation of the Creatine Transporter SLC6A8 by JAK2. Journal of Membrane Biology, 2012, 245, 157-163.	1.0	16
58	Stimulation of the glucose carrier SGLT1 by JAK2. Biochemical and Biophysical Research Communications, 2011, 408, 208-213.	1.0	24
59	Stimulation of the amino acid transporter SLC6A19 by JAK2. Biochemical and Biophysical Research Communications, 2011, 414, 456-461.	1.0	17
60	Regulation of the Glutamate Transporters by JAK2. Cellular Physiology and Biochemistry, 2011, 28, 693-702.	1.1	38